Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 1119.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Effect of complexity on marine ecosystem models</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Fulton, Elizabeth A." name="eprints.creators_name" />
  14. <meta content="Smith, Anthony D.M." name="eprints.creators_name" />
  15. <meta content="Johnson, Craig R." name="eprints.creators_name" />
  16. <meta content="beth.fulton@csiro.au" name="eprints.creators_id" />
  17. <meta name="eprints.creators_id" />
  18. <meta content="Craig.Johnson@utas.edu.au" name="eprints.creators_id" />
  19. <meta content="article" name="eprints.type" />
  20. <meta content="2007-05-31" name="eprints.datestamp" />
  21. <meta content="2008-02-04T05:31:33Z" name="eprints.lastmod" />
  22. <meta content="show" name="eprints.metadata_visibility" />
  23. <meta content="Effect of complexity on marine ecosystem models
  24. " name="eprints.title" />
  25. <meta content="pub" name="eprints.ispublished" />
  26. <meta content="270702" name="eprints.subjects" />
  27. <meta content="public" name="eprints.full_text_status" />
  28. <meta content="Ecosystem, Multispecies, Model, Complexity, Model structure, Model scope" name="eprints.keywords" />
  29. <meta content="Ecosystem rather than species management has become an explicit part of policies that
  30. feature in international treaties and national legislation. Many of the tools that will be needed to fulfil
  31. the requirements of these policies are still in an early stage of development. One such tool is trophic
  32. ecosystem modelling. These models have been put forward to aid system-level understanding and
  33. provide insight into the potential impacts of human activities. Despite this, there are many gaps in
  34. knowledge of their strengths and weaknesses. In particular, little is known about the effect of the
  35. level of detail in a model on its performance. There has been some consideration of the effects of
  36. model formulation, as well as the effects of the physical, biological and chemical scope of multispecies
  37. and ecosystem models on their performance. A review of existing research indicates that
  38. there is a humped relationship between model detail and performance for these models, and that
  39. there are some guiding principles to consider during model development. This review gives some
  40. insight into which model structures and assumptions are likely to aid understanding and management,
  41. and which may be unnecessary. Further, it provides some understanding of whether some
  42. models can capture properties of real systems that other models cannot. The main recommendation
  43. is that the use of a single 'ultimate' ecosystem model is ill-advised, while the comparative and confirmatory
  44. use of multiple 'minimum-realistic' models is strongly recommended." name="eprints.abstract" />
  45. <meta content="2003-05" name="eprints.date" />
  46. <meta content="published" name="eprints.date_type" />
  47. <meta content="Marine Ecology Progress Series" name="eprints.publication" />
  48. <meta content="253" name="eprints.volume" />
  49. <meta content="1-16" name="eprints.pagerange" />
  50. <meta content="UNSPECIFIED" name="eprints.thesis_type" />
  51. <meta content="TRUE" name="eprints.refereed" />
  52. <meta content="0171-8630" name="eprints.issn" />
  53. <meta content="http://www.int-res.com/abstracts/meps/v253/p1-16/" name="eprints.official_url" />
  54. <meta content="Andersen KP, Ursin E (1977) A multispecies extension to the
  55. beverton and holt theory of fishing, with accounts of phosphorus
  56. circulation and primary production. Medd Danm
  57. Fisk-Havunders NS 7:319-435
  58. Baretta JW, Ebenhoh W, Ruardij P (1995) The European
  59. Regional Seas Ecosystem Model, a complex marine
  60. ecosystem model. Neth J Sea Res 33:233-246
  61. Baretta-Bekker JG, Baretta JW (eds) (1997) Special issue:
  62. European Regional Seas Ecosystem Model II. J Sea Res 38
  63. Bartell SM, Cale WG, O'Neill RV, Gardner RH (1988) Aggregation
  64. error: research objectives and relevant model
  65. structure. Ecol Model 41:157-168
  66. Barthel KG, Goni R (1995) Preface. Neth J Sea Res 33:229
  67. Bax N, Eliassen JE (1990) Multispecies analysis in Balsfjord,
  68. northern Norway: solution and sensitivity analysis of
  69. a simple ecosystem model. J Cons Int Explor Mer 47:
  70. 175-204
  71. Beck MB (1999) Coping with ever larger problems, models,
  72. and databases. Water Sci Technol 39:1-11
  73. Begon M, Mortimer M (1986) Population ecology: a unified
  74. study of animals and plants. Blackwell Science Publications,
  75. London, Melbourne, Boston
  76. Bosserman RW (1980) Complexity measures for assessment of
  77. environmental impact in ecosystem networks. In: Proceedings
  78. of the Pittsburgh Conference of Modelling
  79. and Simulation, Pittsburgh, PA, USA, April 20-23, 1980,
  80. p 811-820
  81. Bosserman RW (1982) Structural comparisons for four lake
  82. ecosystem models. In: Troncale L (ed) Systems science and
  83. science, Proceedings of the 26th Annual Meeting of the
  84. Society for General Systems Research with the American
  85. Association for the Advancement of Science, Washington,
  86. D.C., January 5-9, 1982. Society for General Systems
  87. Research: Louisville, Kentucky, p 559-568
  88. Botkin DB (1977) Bits, bytes, and IBP. BioScience 27:385
  89. Breckling B, Muller F (1994) Current trends in ecological
  90. modelling at the 8th ISEM conference on the state-of-theart.
  91. Ecol Model 75/76:667-675
  92. Brooks RJ, Tobias AM (1996) Choosing the best model: level
  93. of detail, complexity, and model performance. Mathl
  94. Comput Model 24:1-14
  95. Butterworth DS (1989) The Benguela Ecology Programme:
  96. successful and appropriate? S Afr J Mar Sci 85:633-643
  97. Cale WG, Odell PL (1980) Behaviour of aggregate state variable
  98. in ecosystem models. Math Biosci 49:121-137
  99. Cale WG, O'Neill RV, Gardner RH (1983) Aggregation error
  100. in nonlinear ecological models. J Theor Biol 100:539-550
  101. Christensen V (1992) Network analysis of trophic interactions
  102. in aquatic ecosystems. PhD thesis, Royal Danish School of
  103. Pharmacy, Copenhagen
  104. Christensen V, Walters CJ, Pauly D (2000) ECOPATH with
  105. ECOSIM: a user's guide. October 2000 edn. Fisheries Centre,
  106. University of British Columbia, Vancouver
  107. Cohen JE, Newman CM (1988) Dynamic basis of food web
  108. organization. Ecology 69:1655-1664
  109. Costanza R, Maxwell T (1994) Resolution and predictability:
  110. an approach to the scaling problem. Land Ecol 9:47-57
  111. Costanza R, Sklar FH (1985) Articulation, accuracy and effectiveness
  112. of mathematical models: a review of freshwater
  113. wetland applications. Ecol Model 27:45-68
  114. DeCoursey DG (1992) Developing models with more detail:
  115. do more algorithms give more truth? Weed Technol 6:
  116. 709-715
  117. Duplisea DE (2000) The ecological hierarchy, model complexity,
  118. predictive ability and robust management. In: Report
  119. on the Young Scientists Conference on Marine Ecosystem
  120. Perspectives, ICES Cooperative Research Report No. 240.
  121. International Council for the Exploration of the Sea,
  122. Copenhagen, p 59-60
  123. Duplisea DE, Bravington MV (1999) Harvesting a size-structured
  124. ecosystem. ICES 1999/Z:01 Ecosystem management.
  125. International Council for the Exploration of the Sea,
  126. Copenhagen
  127. Edwards AM (2001) Adding detritus to a nutrientphytoplankton-
  128. zooplankton model: a dynamical-systems
  129. approach. J Plankton Res 23:389-413
  130. Edwards AM, Brindley J (1999) Zooplankton mortality and
  131. the dynamical behaviour of plankton population models.
  132. Bull Math Biol 61:303-339
  133. Elert M, Butler A, Chen J, Dovlete C and 5 others (1999)
  134. Effects of model complexity on uncertainty estimates.
  135. J Environ Radioact 42:255-270
  136. Fasham MJR (1993) Modelling the marine biota. In: Heimann
  137. M (ed) The global carbon cycle. Springer-Verlag, New
  138. York
  139. Fransz HG, Mommaerts JP, Radach G (1991) Ecological
  140. modelling of the North Sea. Neth J Sea Res 28:67-140
  141. Fulton EA (2001) The effects of model structure and complexity
  142. on the behaviour and performance of marine ecosystem
  143. models. PhD thesis, School of Zoology, University of
  144. Tasmania, Hobart, Australia
  145. Fulton EA, Smith ADM, Johnson CR (in press) Mortality and
  146. predation in ecosystem models: is it important how these
  147. are expressed? Ecol Model
  148. Gao H, Wei H, Sun W, Zhai X (2000) Functions used in biological
  149. models and their influences on simulations. Indian
  150. J Mar Sci 29:230-237
  151. Gardner MR, Ashby WR (1970) Connectance of large dynamic
  152. (cybernetic) systems: critical values for stability.
  153. Nature 228:784
  154. Gardner RH, Cale WG, O'Neill RV (1982) Robust analysis of
  155. aggregation error. Ecology 63:1771-1779
  156. Hakanson L (1995) Optimal size of predictive models. Ecol
  157. Model 78:195-204
  158. Hakanson L (1997) Modelling of radiocesium in lakes-on
  159. predictive power and lessons for the future. Stud Environ
  160. Sci 68:3-45
  161. Halfon E (1979) Computer-based development of large-scale
  162. ecological models: problems and prospects. In: Innis GS,
  163. O'Neill RV (eds) Systems analysis of ecosystems. International
  164. Co-operative Publishing House, Fairland, MD
  165. Halfon E (1983a) Is there a best model structure? I. Modeling
  166. the fate of a toxic substance in a lake. Ecol Model 20:
  167. 135-152
  168. Halfon E (1983b) Is there a best model structure? II. Comparing
  169. the model structures of different fate models. Ecol
  170. Model 20:153-163
  171. Hassell MP, Commins HN (1978) Sigmoid functional responses
  172. and population stability. Theor Popul Biol 14:62-67
  173. Hoch T, Garreau P (1998) Phytoplankton dynamics in the
  174. English Channel: a simplified three-dimensional approach.
  175. J Mar Syst 16:133-150
  176. Hollowed AB, Bax N, Beamish R, Collie J, Fogarty M, Livingston
  177. P, Pope J, Rice JC (2000) Are multispecies models
  178. an improvement on single-species models for measuring
  179. fishing impacts on marine ecosystems? ICES J Mar Sci 57:
  180. 707-719
  181. Hurtt GC, Armstrong RA (1996) A pelagic ecosystem model
  182. calibrated with BATS data. Deep-Sea Res Part II Top Stud
  183. Oceanogr 43:653-683
  184. Innis GS, Rexstad E (1983) Simulation and model simplification
  185. techniques. Simulation 41:7-15
  186. Iwasa Y, Andreasen V, Levin S (1987) Aggregation in model
  187. ecosystems. I: Perfect aggregation. Ecol Model 37:287-302
  188. Jester DB Jr, Garling DL Jr, Tipton AR, Lackey RT (1977) A
  189. general population dynamics theory for largemouth bass.
  190. FWS 1-77, Virgina Polytechnic Institute and State University,
  191. Blacksburg, VA
  192. Johnson CR (1997) Self-organizing in spatial competition systems.
  193. In: Klomp NI, Lunt ID (eds) Frontiers in ecology-building the links. Elsevier, Amsterdam, p 245-263
  194. Johnson CR, Seinen I (2002) Selection for restraint in competitive
  195. ability in spatial competition systems. Proc R Soc
  196. Lond Ser B Biol Sci 269:655-663
  197. Jorgensen SE (1994) Fundamentals of ecological modelling,
  198. 2nd edn Developments in environmental modelling. 19.
  199. Elsevier, Amsterdam
  200. Jorgensen SE, Patten BC, Straskraka M (1992) Ecosystems
  201. emerging: toward an ecology of complex systems in a
  202. complex future. Ecol Model 62:1-27
  203. Kremer JN, Kremer P (1982) A three-trophic level estuarine
  204. model: synergism of two mechanistic simulations. Ecol
  205. Model 415:145-157
  206. Lee K, Fishwick PA (1998) Generation of multimodels and
  207. selection of the optimal model for real-time simulation. In:
  208. Sisti AF (ed) Enabling technology for simulation science II,
  209. Proc SPIE 3369:164-175
  210. Ludwig D, Walters CJ (1981) Measurement errors and uncertainty
  211. in parameter estimates for stock recruitment. Can J
  212. Fish Aquat Sci 38:711-720
  213. Ludwig D, Walters CJ (1985) Are age-structured models
  214. appropriate for catch-effort data? Can J Fish Aquat Sci 42:
  215. 1066-1072
  216. MacArthur RH (1955) Fluctuations of animal populations and
  217. a measure of community stability. Ecology 36:533-536
  218. Mace PM (2001) A new role for MSY in single-species and
  219. ecosystem approaches to fisheries stock assessment and
  220. management. Fish Fish 2:2-32
  221. May RM (1974) Stability and complexity in model ecosystems,
  222. 2nd edn. Monographs in population biology, No. 6. Princeton
  223. University, Princeton, NJ
  224. May RM (1973) Stability and complexity in model ecosystems.
  225. Princeton University Press, Princeton, NJ
  226. May RM (1976) Theoretical ecology. Saunders, Philadelphia
  227. McCann KS (2000) The diversity-stability debate. Nature 405:
  228. 228-233
  229. Murray AG (2001) The use of simple models in the design and
  230. calibration of a dynamic 2D model of a semi-enclosed Australian
  231. bay. Ecol Model 136:15-30
  232. Murray A, Parslow J (1997) Port Phillip Bay integrated model:
  233. final report. Technical report No. 44. Port Phillip Bay Environmental
  234. Study. CSIRO, Canberra, Australia
  235. Murray AG, Parslow JS (1999a) Modelling of nutrient impacts
  236. in Port Phillip Bay-a semi-enclosed marine Australian
  237. ecosystem. Mar Freshw Res 50:597-611
  238. Murray AG, Parslow JS (1999b) The analysis of alternative
  239. formulations in a simple model of a coastal ecosystem.
  240. Ecol Model 119:149-166
  241. Nihoul JCJ (1998a) Optimum complexity in ecohydrodynamic
  242. modelling: an ecosystem dynamics standpoint. J Mar Syst
  243. 16:3-5
  244. Nihoul JCJ (1998b) Modelling marine ecosystems as a discipline
  245. in Earth Science. Earth-Sci Rev 44:1-13
  246. Nihoul JCJ, Delhez EJM (1998) Preface, 28th International
  247. Liege Colloquium on Ocean Hydrodynamics: Liege,
  248. May 6-10, 1996: Modelling hydrodynamically dominated
  249. marine ecosystems. J Mar Syst 16:1-2
  250. Nihoul JCJ, Djenidi S (1998) Chapter 18: Coupled physical,
  251. chemical and biological models. In: Brink KH, Robinson
  252. AR (eds) The sea. John Wiley &amp; Sons, New York
  253. O'Neill RV (1975) Modeling in the eastern deciduous forest
  254. biome. In: Patten BC (ed) System analysis and simulation
  255. in ecology III. Academic Press, New York, London,
  256. p 49-72
  257. O'Neill RV (1979) Transmutations across hierarchical levels.
  258. In: Innis GS O'Neill RV (eds) Systems analysis of ecosystems.
  259. International Co-operative, Fairland, MD, p 59-78
  260. O'Neill RV, Rust B (1979) Aggregation error in ecological
  261. models. Ecol Model 7:91-105
  262. Optiz S (1996) Trophic interactions in Caribbean coral reefs.
  263. ICLARM Tech Rep 43
  264. Pahl-Wostl C (1997) Dynamic structure of a food web model:
  265. comparison with a food chain model. Ecol Model 100:
  266. 103-123
  267. Patten BC, Egloff DA, Richardson TH (1975) Total ecosystem
  268. model for a cove in Lake Texoma. In: Patten BC (ed) System
  269. analysis and simulation in ecology III. Academic
  270. Press, New York, London
  271. Pimm SL (1982) Food webs. Chapman &amp; Hall, London
  272. Pimm SL, Lawton JH (1978) On feeding on more than one
  273. trophic level. Nature 275:542-544
  274. Punt AE, Leslie RW (1995) The effects of future consumption
  275. by the Cape fur seal on catches and catch rates of the Cape
  276. hakes. 1. Feeding and diet of the Cape hakes Merluccius
  277. capensis and M. paradoxus. S A J Mar Sci 16:37-55
  278. Rastetter EB, King AW, Cosby BJ, Hornberger GH, O'Neill
  279. RV, Hobbie JH (1992) Aggregating fine-scale ecological
  280. knowledge to model coarser-scale attributes of ecosystems.
  281. Ecol Appl 2:55-70
  282. Reichert P, Omlin M (1997) On the usefulness of overparameterized
  283. ecological models. Ecol Model 95:289-299
  284. Sainsbury K, Punt AE, Smith ADM (2000) Design of operational
  285. management strategies for achieving fishery ecosystem
  286. objectives. ICES J Mar Sci 57:731-741
  287. Siljak DD (1974) Connective stability of complex ecosystems.
  288. Nature 249:280
  289. Siljak DD (1976) When is a complex ecosystem stable? Math
  290. Biosci 25:25-50
  291. Silvert WL (1981) Principles of ecosystem modelling. In:
  292. Longhurst AR (ed) Analysis of marine ecosystems. Academic
  293. Press, New York, p 651-676
  294. Silvert WL (1996) Size-aggregation in models of aquatic
  295. ecosystems. Sci Total Environ 183:107-114
  296. Steele JH (1998) From carbon flux to regime shift. Fish
  297. Oceanogr 7:176-181
  298. Steele JH, Henderson EW (1992) The role of predation in
  299. plankton models. J Plank Res 14:157-172
  300. Sugihara G, Garcia S, Gulland JA, Lawton JH and 7 others
  301. (1984) Ecosystem dynamics: Group Report. In: May RM
  302. (ed) Exploitation of marine communities, Dahlem Konferenzen
  303. 1984. Springer-Verlag, Berlin, p 131-153
  304. Tett P, Wilson H (2000) From biogeochemical to ecological
  305. models of marine microplankton. J Mar Syst 25:431-446
  306. van Tongeren OFR (1995) Data analysis or simulation model:
  307. a critical evaluation of some methods. Ecol Model 78:
  308. 51-60
  309. Waide JB, Webster JR (1976) Engineering systems analysis:
  310. applicability to ecosystems. In: Patten BC (ed) Systems
  311. analysis and simulation in ecology. IV. Academic Press,
  312. New York, p 329-371
  313. Walters C (1998) ECOSIM and ECOSPACE: basic considerations.
  314. In: Pauly D, Weingartner G (eds) Use of ECOPATH
  315. and ECOSIM to evaluate strategies for sustainable exploitation
  316. of multi-species resources. Proceedings of a
  317. Workshop held March 25-27, 1998. Fisheries Centre, University
  318. of British Columbia: Vancouver, Canada, p 11-14
  319. Walters C, Kitchell JF (2001) Cultivation/depensation effects
  320. on juvenile survival and recruitment: implications for the
  321. theory of fishing. Can J Fish Aquat Sci 58:39-50
  322. Walters C, Christensen V, Pauly D (1997) Structuring dynamic
  323. models of exploited ecosystems from trophic massbalance
  324. assessments. Rev Fish Biol Fish 7:139-172
  325. Walters C, Pauly D, Christensen V (1999) ECOSPACE:
  326. prediction of mesoscale spatial patterns in trophic
  327. relationships of exploited ecosystems, with emphasis on
  328. the impacts of marine protected areas. Ecosystems 2:
  329. 539-554
  330. Watt KEF (1975) Critique and comparison of biome ecosystem
  331. modeling. In: Patten BC (ed) System analysis and simulation
  332. in ecology, III. Academic Press: New York, London,
  333. p 139-152
  334. Wiegert RG (1975) Simulation modeling of the algal-fly components
  335. of a thermal ecosystem: effects of spatial heterogeneity,
  336. time delays, and model condensation. In: Patten
  337. BC (ed) System analysis and simulation in ecology, III.
  338. Academic Press, New York, p 157-181
  339. Wiegert RG (1977) A model of a thermal spring food chain.
  340. In: Hall C, Day JW (eds) Ecosystem modelling in theory
  341. and practice. Wiley &amp; Sons, New York, p 290-315
  342. Yachi S, Loreau M (1999) Biodiversity and ecosystem functioning
  343. in fluctuating environments: the insurance hypothesis.
  344. Proc Natl Acad Sci USA 96:1463-1468
  345. Yearsley JR, Lettenmaier DP (1987) Model complexity and
  346. data worth: an assessment of changes in the global carbon
  347. budget. Ecol Model 39:201-226
  348. Yodzis P (2001a) Must top predators be culled for the sake of
  349. fisheries? Trends Ecol Evol 16:78-84
  350. Yodzis P (2001b) Culling predators to protect fisheries: a case
  351. of accumulating uncertainties-response. Trends Ecol Evol
  352. 16:282-283
  353. Yool A (1998) The dynamics of open-ocean plankton ecosystem
  354. models. PhD thesis, Ecology and Epidemiology,
  355. Department of Biological Sciences, University of Warwick
  356. Zeigler BP (1976) The aggregation problem. In: Patten BC
  357. (ed) System analysis and simulation in ecology, IV. Academic
  358. Press, New York, p 299-311" name="eprints.referencetext" />
  359. <meta content="Fulton, Elizabeth A. and Smith, Anthony D.M. and Johnson, Craig R. (2003) Effect of complexity on marine ecosystem models. Marine Ecology Progress Series, 253 . pp. 1-16. ISSN 0171-8630" name="eprints.citation" />
  360. <meta content="http://eprints.utas.edu.au/1119/1/2003_Fulton%2C_Smith_%26_Johnson_MEPS.pdf" name="eprints.document_url" />
  361. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  362. <meta content="Effect of complexity on marine ecosystem models
  363. " name="DC.title" />
  364. <meta content="Fulton, Elizabeth A." name="DC.creator" />
  365. <meta content="Smith, Anthony D.M." name="DC.creator" />
  366. <meta content="Johnson, Craig R." name="DC.creator" />
  367. <meta content="270702 Marine and Estuarine Ecology (incl. Marine Ichthyology)" name="DC.subject" />
  368. <meta content="Ecosystem rather than species management has become an explicit part of policies that
  369. feature in international treaties and national legislation. Many of the tools that will be needed to fulfil
  370. the requirements of these policies are still in an early stage of development. One such tool is trophic
  371. ecosystem modelling. These models have been put forward to aid system-level understanding and
  372. provide insight into the potential impacts of human activities. Despite this, there are many gaps in
  373. knowledge of their strengths and weaknesses. In particular, little is known about the effect of the
  374. level of detail in a model on its performance. There has been some consideration of the effects of
  375. model formulation, as well as the effects of the physical, biological and chemical scope of multispecies
  376. and ecosystem models on their performance. A review of existing research indicates that
  377. there is a humped relationship between model detail and performance for these models, and that
  378. there are some guiding principles to consider during model development. This review gives some
  379. insight into which model structures and assumptions are likely to aid understanding and management,
  380. and which may be unnecessary. Further, it provides some understanding of whether some
  381. models can capture properties of real systems that other models cannot. The main recommendation
  382. is that the use of a single 'ultimate' ecosystem model is ill-advised, while the comparative and confirmatory
  383. use of multiple 'minimum-realistic' models is strongly recommended." name="DC.description" />
  384. <meta content="2003-05" name="DC.date" />
  385. <meta content="Article" name="DC.type" />
  386. <meta content="PeerReviewed" name="DC.type" />
  387. <meta content="application/pdf" name="DC.format" />
  388. <meta content="http://eprints.utas.edu.au/1119/1/2003_Fulton%2C_Smith_%26_Johnson_MEPS.pdf" name="DC.identifier" />
  389. <meta content="http://www.int-res.com/abstracts/meps/v253/p1-16/" name="DC.relation" />
  390. <meta content="Fulton, Elizabeth A. and Smith, Anthony D.M. and Johnson, Craig R. (2003) Effect of complexity on marine ecosystem models. Marine Ecology Progress Series, 253 . pp. 1-16. ISSN 0171-8630" name="DC.identifier" />
  391. <meta content="http://eprints.utas.edu.au/1119/" name="DC.relation" />
  392. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/BibTeX/epprod-eprint-1119.bib" title="BibTeX" type="text/plain" />
  393. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/ContextObject/epprod-eprint-1119.xml" title="OpenURL ContextObject" type="text/xml" />
  394. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/ContextObject::Dissertation/epprod-eprint-1119.xml" title="OpenURL Dissertation" type="text/xml" />
  395. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/ContextObject::Journal/epprod-eprint-1119.xml" title="OpenURL Journal" type="text/xml" />
  396. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/DC/epprod-eprint-1119.txt" title="Dublin Core" type="text/plain" />
  397. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/DIDL/epprod-eprint-1119.xml" title="DIDL" type="text/xml" />
  398. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/EndNote/epprod-eprint-1119.enw" title="EndNote" type="text/plain" />
  399. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/HTML/epprod-eprint-1119.html" title="HTML Citation" type="text/html; charset=utf-8" />
  400. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/METS/epprod-eprint-1119.xml" title="METS" type="text/xml" />
  401. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/MODS/epprod-eprint-1119.xml" title="MODS" type="text/xml" />
  402. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/RIS/epprod-eprint-1119.ris" title="Reference Manager" type="text/plain" />
  403. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/Refer/epprod-eprint-1119.refer" title="Refer" type="text/plain" />
  404. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/Simple/epprod-eprint-1119text" title="Simple Metadata" type="text/plain" />
  405. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/Text/epprod-eprint-1119.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  406. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1119/XML/epprod-eprint-1119.xml" title="EP3 XML" type="text/xml" />
  407.  
  408. </head>
  409. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  410. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  411.  
  412.  
  413.  
  414.  
  415. <table width="795" border="0" cellspacing="0" cellpadding="0">
  416. <tr>
  417. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  418. <table border="0" cellpadding="0" cellspacing="0" width="795">
  419. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  420. <tr>
  421. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  422. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  423. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  424. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  425. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  426. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  427. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  428. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  429. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  430. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  431. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  432. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  433. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  434. </tr>
  435. <tr>
  436. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  437. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  438. </tr>
  439. <tr>
  440. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  441. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  442. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  443. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  444. </tr>
  445. <tr>
  446. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  447. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  448. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  449. </tr>
  450. <tr>
  451. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  452. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  453. </tr>
  454. <tr>
  455. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  456. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  457. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  458. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  459. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  460. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  461. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  462. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  463. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  464. </tr>
  465. <tr>
  466. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  467. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  468. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  469. </tr>
  470. <tr>
  471. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  472. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  473. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  474. </tr>
  475. </table></td>
  476. </tr>
  477. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  478. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  479. <td align="right" style="white-space: nowrap">
  480. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  481. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  482. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  483. <input type="hidden" name="_order" value="bytitle" />
  484. <input type="hidden" name="basic_srchtype" value="ALL" />
  485. <input type="hidden" name="_satisfyall" value="ALL" />
  486. </form>
  487. </td>
  488. </tr></table></td></tr>
  489. <tr>
  490. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  491.  
  492.  
  493. <div align="center">
  494. <table width="720" class="ep_tm_main"><tr><td align="left">
  495. <h1 class="ep_tm_pagetitle">Effect of complexity on marine ecosystem models</h1>
  496. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Fulton, Elizabeth A.</span> and <span class="person_name">Smith, Anthony D.M.</span> and <span class="person_name">Johnson, Craig R.</span> (2003) <xhtml:em>Effect of complexity on marine ecosystem models.</xhtml:em> Marine Ecology Progress Series, 253 . pp. 1-16. ISSN 0171-8630</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_1396' );" onmouseout="EPJS_HidePreview( event, 'doc_preview_1396' );" href="http://eprints.utas.edu.au/1119/1/2003_Fulton%2C_Smith_%26_Johnson_MEPS.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" border="0" class="ep_doc_icon" /></a><div class="ep_preview" id="doc_preview_1396"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/1119/thumbnails/1/preview.png" border="0" class="ep_preview_image" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/1119/1/2003_Fulton%2C_Smith_%26_Johnson_MEPS.pdf"><span class="ep_document_citation">PDF</span></a> - Requires a PDF viewer<br />129Kb</td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://www.int-res.com/abstracts/meps/v253/p1-16/">http://www.int-res.com/abstracts/meps/v253/p1-16/</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Ecosystem rather than species management has become an explicit part of policies that&#13;
  497. feature in international treaties and national legislation. Many of the tools that will be needed to fulfil&#13;
  498. the requirements of these policies are still in an early stage of development. One such tool is trophic&#13;
  499. ecosystem modelling. These models have been put forward to aid system-level understanding and&#13;
  500. provide insight into the potential impacts of human activities. Despite this, there are many gaps in&#13;
  501. knowledge of their strengths and weaknesses. In particular, little is known about the effect of the&#13;
  502. level of detail in a model on its performance. There has been some consideration of the effects of&#13;
  503. model formulation, as well as the effects of the physical, biological and chemical scope of multispecies&#13;
  504. and ecosystem models on their performance. A review of existing research indicates that&#13;
  505. there is a humped relationship between model detail and performance for these models, and that&#13;
  506. there are some guiding principles to consider during model development. This review gives some&#13;
  507. insight into which model structures and assumptions are likely to aid understanding and management,&#13;
  508. and which may be unnecessary. Further, it provides some understanding of whether some&#13;
  509. models can capture properties of real systems that other models cannot. The main recommendation&#13;
  510. is that the use of a single 'ultimate' ecosystem model is ill-advised, while the comparative and confirmatory&#13;
  511. use of multiple 'minimum-realistic' models is strongly recommended.</p></div><table style="margin-bottom: 1em" border="0" cellpadding="3" class="not_ep_block"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Ecosystem, Multispecies, Model, Complexity, Model structure, Model scope</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/270702.html">270000 Biological Sciences &gt; 270700 Ecology and Evolution &gt; 270702 Marine and Estuarine Ecology (incl. Marine Ichthyology)</a></td></tr><tr><th valign="top" class="ep_row">Collections:</th><td valign="top" class="ep_row">UNSPECIFIED</td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1119</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Professor Craig R. Johnson</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">31 May 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">04 Feb 2008 16:31</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1119;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=1119">item control page</a></p>
  512. </td></tr></table>
  513. </div>
  514.  
  515.  
  516.  
  517. <!-- InstanceEndEditable --></td>
  518. </tr>
  519. <tr>
  520. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  521. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  522. <tr valign="top">
  523. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  524. </tr>
  525. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  526. <tr valign="top">
  527. <td width="68%" class="footer">Authorised by the University Librarian<br />
  528. © University of Tasmania ABN 30 764 374 782<br />
  529. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  530. <td width="32%"><div align="right">
  531. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  532. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  533. </a></p>
  534. </div></td>
  535. </tr>
  536. <tr valign="top">
  537. <td><p>  </p></td>
  538. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  539. </tr>
  540. </table>
  541. <!-- #EndLibraryItem -->
  542. <div align="center"></div></td>
  543. </tr>
  544. </table>
  545.  
  546. </body>
  547. </html>