<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head> <title>UTas ePrints - Petrographic, Geochemical, and Fluid Inclusion Evidence for the Origin of Siliceous Cap Rocks Above Volcanic-Hosted Massive Sulfide Deposits at Myra Falls, Vancouver Island, British Columbia, Canada</title> <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script> <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style> <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style> <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="Top" href="http://eprints.utas.edu.au/" /> <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" /> <meta content="Jones, Sarah" name="eprints.creators_name" /> <meta content="Gemmell, J.B." name="eprints.creators_name" /> <meta content="Davidson, G.J." name="eprints.creators_name" /> <meta content="sarah.jones@rsgglobal.com" name="eprints.creators_id" /> <meta content="Bruce.Gemmell@utas.edu.au" name="eprints.creators_id" /> <meta content="Garry.Davidson@utas.edu.au" name="eprints.creators_id" /> <meta content="article" name="eprints.type" /> <meta content="2007-06-21" name="eprints.datestamp" /> <meta content="2008-01-08 15:30:00" name="eprints.lastmod" /> <meta content="show" name="eprints.metadata_visibility" /> <meta content="Petrographic, Geochemical, and Fluid Inclusion Evidence for the Origin of Siliceous Cap Rocks Above Volcanic-Hosted Massive Sulfide Deposits at Myra Falls, Vancouver Island, British Columbia, Canada" name="eprints.title" /> <meta content="pub" name="eprints.ispublished" /> <meta content="260100" name="eprints.subjects" /> <meta content="260000" name="eprints.subjects" /> <meta content="restricted" name="eprints.full_text_status" /> <meta content="chert, argillite, Devonian, fluid inclusions, exhalite, replacement, alteration, ore deposit genesis" name="eprints.keywords" /> <meta content="Definitive version available at http://econgeol.geoscienceworld.org/" name="eprints.note" /> <meta content="Massive sulfides at the Myra Falls volcanic-hosted massive sulfide (VHMS) camp, Vancouver Island, British Columbia, Canada, are overlain by white chert, black chert, argillite, and siltstone. White chert is best developed above the Battle orebody, where it forms a siliceous caprock (3-5 m thick) above the massive sulfides. There is a gradational lateral change from white chert above massive sulfides to black chert and unaltered argillite, 100 to 150 m south of the Battle orebody. Chert horizons are also located above the Ridge and Extension ore zones, but only minor chert lies above the HW orebody, which is instead overlain by a thick argillite sequence. The chert and argillite share similar sedimentologic and petrologic features, including abundant parallel laminations, interbedded turbidites, radiolarian-rich layers, soft-sediment deformation, scours, flame structures, and small phosphatic concretions. These features indicate that white and black chert formed as a replacement of mudstone rather than as exhalative or biogenic deposits. Silicification occurred early in the depositional history of the fine-grained sediments and was contemporaneous with some ore formation. Early syndepositional features are still visible in the chert, with primary pore spaces such as radiolarian tests filled by silica, rutile, apatite, and minor sulfides displaying open-space crystal growth. The presence of minor ore-clast breccias above the orebody indicates that at least parts of the Battle orebody were exposed on the sea floor. Metal zoning is observed in the cap-rock horizon above the Battle orebody, with higher Cu, Zn, and Cd contentrations in chert directly above massive sulfides, higher Pb, Sb, and Ag contentrations in black chert at the edge of the siliceous cap rocks and lower metal concentrations in the distal argillite. Primary fluid inclusions in spherical quartz patches in chert above the Battle orebody indicate that hydrothermal fluids passing through sediment were between 135 to 250C and had salinities ranging from 3.0 to 12.1 wt percent NaCl equiv. These data are similar to those for fluid inclusions measured in quartz interstitial to sulfides in the underlying Battle orebody, which have temperatures of homogenization ranging from 140 to 250C and salinities from 3.0 to 12.4 wt percent NaCl equiv. Fluid inclusions in the Battle orebody display a slight increase in salinity and homogenization temperature with depth, which may reflect the overprinting of earlier high temperature stages by cooler fluids as the hydrothermal system waned or varying degrees of mixing between hydrothermal fluids and seawater. A minimum depth for deposition of the cap rocks (>200 m) is estimated, based on sedimentologic features such as fine parallel laminations and interbedded sandstone turbidites, which indicate deposition below storm wave base. Greater water depths (1,000-1,500 m) are suggested by the lack of evidence of boiling in fluid inclusions. Low O2 concentrations in the bottom water of the Battle basin are suggested by the absence of bioturbation, lack of fossils of benthic fauna, degree of pyritization values >0.90, elevated Zn, Pb, Cu, Cd, As, Sb, Ag, Ba, and V, low Fe and Mn, and V/(V + Ni) > 0.8 in the unaltered argillite. Paleosea-floor reconstructions indicate that the Battle and HW orebodies formed in small basins along a northwest-trending ridge. The finegrained sediments were deposited in depocenters within paleotopographic lows. Hydrothermal fluid densities, estimated from fluid inclusions at Myra Falls, range from 0.88 to 1.05 g/cm3 and are higher than for many other VHMS deposits. However, they are close to the density of seawater at 2C and a 2,000-m depth (1.028 g/cm3). Replacement textures in the siliceous cap rocks above the Battle deposit, the sheetlike morphology of the siliceous cap rocks, and lateral metal zonation indicates that diffuse lateral flow of hydrothermal fluids through the porous sea-floor sediments was more important than the buoyant rise of hydrothermal fluids into the water column. However, buoyant venting during formation of the Battle deposit is indicated by positive Eu anomalies and elevated metal values in argillite of the Battle basin, reflecting the wide dispersal of plume particulates. The range of fluid densities indicate that the hydrothermal fluids emerging onto the sea floor and flowing laterally through porous sea-floor sediments would have varied from buoyant to neutrally buoyant, to negatively buoyant." name="eprints.abstract" /> <meta content="2006-05" name="eprints.date" /> <meta content="published" name="eprints.date_type" /> <meta content="Economic Geology" name="eprints.publication" /> <meta content="101" name="eprints.volume" /> <meta content="3" name="eprints.number" /> <meta content="555-584" name="eprints.pagerange" /> <meta content="10.2113/gsecongeo.101.3.555" name="eprints.id_number" /> <meta content="UNSPECIFIED" name="eprints.thesis_type" /> <meta content="TRUE" name="eprints.refereed" /> <meta content="0361-0128" name="eprints.issn" /> <meta content="http://dx.doi.org/10.2113/gsecongeo.101.3.555" name="eprints.official_url" /> <meta content="Adachi, M., Yamamoto, K., and Sugisaki, R., 1986, Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their geological significance as indication of ocean ridge activity: Sedimentary Geology, v. 47, p. 125-148. Alt, J.C., Lonsdale, P., Haymon, R., and Muehlenbachs, K., 1987, Hydrothermal sulfide and oxide deposits on seamounts near 21N, East Pacific Rise: Geological Society of America Bulletin, v. 98, p. 157-168. Barrett, T.J., and Sherlock, R.L., 1996, Volcanic stratigraphy, lithogeochemistry, and seafloor setting of the H-W massive sulfide deposit, Myra Falls, Vancouver Island, British Columbia: Exploration and Mining Geology, v. 5, p. 421-458. Berner, R.A., 1970, Sedimentary pyrite formation: American Journal of Science, v. 268, p. 1-23.1993, Revised equation and table for determining the freezing point depression of H2O-NaCl solutions: Geochimica et Cosmochimica Acta, v. 57, p. 683-684. Bramlette, M.N., 1946, The Monterey Formation of California and the origin of its siliceous rocks: U.S. Geological Survey Professional Paper 212, 55 p. Brown, P.E., 1989, FLINCOR: A microcomputer program for the reduction and investigation of fluid inclusion data: American Mineralogist, v. 74, p. 1390-1393. Browne, P.R.L., 1978, Hydrothermal alteration in active geothermal fields: Annual Review of Earth and Planetary Science Letters, v. 6, p. 229-250. Browne, P.R.L., and Ellis, A.J., 1970, The Ohaki-Broadlands hydrothermal area, New Zealand: Mineralogy and related geochemistry: American Journal of Science, v. 269, p. 97-131. Bryndzia, L.T., Scott, S.D., and Farr, J.E., 1983, Mineralogy, geochemistry, and mineral chemistry of siliceous ore and related footwall rocks in the Uwamuki 2 and 4 deposits, Kosaka mine, Hokuroku district, Japan: ECONOMIC GEOLOGY MONOGRAPH 5, p. 507-522. Cooke, D.R., and Simmons, S.F., 2000, Characteristics and genesis of epithermal gold deposits: Reviews in Economic Geology, v. 13, p 221-244. Davidson, G.J., 1992, Hydrothermal geochemistry and ore genesis of seafloor volcanogenic copper-bearing oxide ores: ECONOMIC GEOLOGY, v. 87, p. 889-912. Davidson, G.J., Stolz, A.G., and Eggins, S.M., 2001, Geochemical anatomy of silica iron exhalites: Evidence for hydrothermal oxyanion cycling in response to vent fluid redox and thermal evolutuion (Mt. Windsor subprovince, Australia): ECONOMIC GEOLOGY, v. 96, p. 1201-1226. Davis, D.W., Lowenstein, T.K., and Spencer, R.J., 1990, The melting behaviour of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O: Geochimica et Cosmochimica Acta, v. 54, p. 591-601. De Baar, H.J.W., German, C.R., Elderfield, H., and van Gaans, P., 1988, Rare earth element distributions in anoxic waters of the Cariaco trench: Geochimica et Cosmochimica Acta, v. 52, p. 1203-1219. De Master, D.J., 2004, The diagenesis of biogenic silca: Chemical transformations occurring in the water column, seabed, and crust: Treatise on Geochemistry, v. 7, p. 87-98. Duhig, N.C., Stolz, J., Davidson, G.J., and Large, R.R., 1992, Cambrian microbial and silica gel textures in silica iron exhalites from the Mount Windsor volcanic belt, Australia: Their petrography, chemistry, and origin: ECONOMIC GEOLOGY, v. 87, p. 764-784. Einsele, G., 2000, Sedimentary basins, evolution, facies, and sediment budget, 2nd ed.: Berlin, New York, Springer Verlag, p. 94-107. Folk, R.L., and McBride, E.F., 1978, Radiolarites and their relation to subjacent oceanic crust in Liguria, Italy: Journal of Sedimentary Petrology, v. 48, p. 1069-1102. Folk, R.L., and Weaver, C.E., 1952, A study of the texture and composition of chert: American Journal of Science, v. 250, p. 498-510. Force, E.R., and Cannon, W.F., 1988, Depositional model for shallow manganese deposits around black shale basins: ECONOMIC GEOLOGY, v. 83, p. 93-117. Fournier, R.O., 1983, A method of calculating quartz solubilities in aqueous sodium chloride solutions: Geochimica et Cosmochimica Acta, v. 47, p.579-586. --1985, The behavior of silica in hydrothermal systems: Reviews in Economic Geology, v. 2, p. 45-61. Gabrielse, H., and Yorath, C.J., 1991, Tectonic synthesis: Geology of Canada, no. 4, v. G-2, p. 677-705. Gemmell, J.G.B., and Large, R.R., 1992, Stringer system and alteration zones underlying the Hellyer volcanogenic massive sulfide deposit, Tasmania: ECONOMIC GEOLOGY, v. 87, p. 620-649. Grant, J.A., 1986, The isocon diagram: A simple solution to Gresens- equation for metasomatic alteration: ECONOMIC GEOLOGY, v. 81, p. 1976-1982. Greenwood, H.J., Woodsworth, G.J., Read, P.B., Ghent, E.D., and Evenchick, C.A., 1991, Metamorphism: Geology of Canada, no. 4, v. G-2, p. 533-570. Grenne, T., and Slack, J.F., 2003a, Paleozoic and Mesozoic silica-rich seawater: Evidence form hematitic chert (jasper) deposits: Geology, v. 31, p.319-322. --2003b, Bedded jaspers of the Ordovician Lokken ophiolite, Norway: Seafloor deposition and diagenetic maturation of hydrothermal plume-derived `silica-iron gels: Mineralium Deposita, v. 38, p. 625-639. Gresens, R.L., 1967, Composition-volume relationships of metasomatism: Chemical Geology, v. 2, p. 47-65. Gromet, L.P., Dymek, R.F., Haskin, L.A., and Korotev, R.L., 1984, The North American Shale Composite.Its compilation, major and trace element characteristics: Geochimica et Cosmochimica Acta, v. 48, p.2469-2482. Hannington, M.D., and Scott, S.D., 1988, Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan de Fuca Ridge: Canadian Mineralogist, v. 26, p. 603-627. Hannington, M.D., Galley, A.G., Herzig, P.M., and Petersen, S., 1998, Comparison of the tag mound and stockwork complex with Cyprus-type massive sulfide deposits: Proceedings of the Ocean Drilling Program, Scientific Results, v. 158, p. 389-415. Hannington, M.D., Bleeker, W., and Kjarsgaard, I., 1999, Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Creek deposit. Part I. North, Central, and South orebodies: ECONOMIC GEOLOGY MONOGRAPH 10, p.163-224. Hanor, J.S., 1994, Physical and chemical controls on the composition of waters in sedimentary basins: Marine and Petroleum Geology, v. 11, p. 31-45. Hedenquist, J.W., and Henley, R.W., 1985, The importance of CO2 on freezing point measurements of fluid inclusions: Evidence from active geothermal systems and implications for epithermal ore deposition: ECONOMIC GEOLOGY, v. 80, p. 1379-1406. Herzig, P.M., Becker, K.P., Stoffers, P., Backer, H., and Blum, N., 1988, Hydrothermal silica chimney fields in the Galapagos spreading centre: Earth and Planetary Science Letters, v. 89, p. 261-272. Hesse, R., 1990a, Origin of chert. Diagenesis of biogenic siliceous sediments: Geoscience Canada Reprint Series 4, p. 227-252. --1990b, Origin of chert. Diagenesis of inorganic and replacement cherts: Geoscience Canada Reprint Series 4, p. 253-275. Hoffman, D.L., Algeo, T.J., Maynard, J.B., Joachimski, M.M., Hower, J.C., and Jaminski, J., 1998, Regional and stratigraphic variation in bottomwater anoxia in offshore core shales of Upper Pennsylvanian cyclothems from the Eastern Midcontinent Shelf (Kansas), U.S.A., in Schieber, J., Zimmerle, W., and Sethi, P., eds., Shales and mudstones II. Petrography, petrophysics, geochemistry, and economic geology: Stuttgart, E. Schwiezerbartsche Verlagsbuchhandlung,p. 243-269. Huston, D.L., 1988, The distribution, mineralogy, and geochemistry of gold and silver in the north end orebody, Rosebery mine, Tasmania: ECONOMIC GEOLOGY, v. 83, p. 1181-1192. --1993, The effect of alteration and metamorphism on wall rocks to the Balcooma and Driy River South volcanic-hosted massive sulfide deposits, Queensland, Australia: Journal of Geochemical Exploration, v. 48, p.277-307. Huyck, H.L.O., 1990, When is a metalliferous black shale not a black shale?: U.S. Geological Survey Circular 1058, p. 42-56. Janecky, D.R., and Seyfried, W.E., Jr., 1984, Formation of massive sulfide deposits on oceanic ridge crests: Incremental reaction models for mixing between hydrothermal solutions and seawater: Geochimica et Cosmochimica Acta, v. 48, p. 2723-2738. Jones, B., and Desrochers, A., 1992, Shallow platform carbonates, in Walker, R.G., and James, N.P., eds., Facies models, response to sea level change: Geological Association of Canada GEO Text 1, p. 277-302. Jones, S.A., 2002, Geology and geochemistry of caprocks above VHMS deposits at Myra Falls VHMS camp, Vancouver Island, B.C., Canada: Unpublished Ph.D. thesis, Hobart, Centre for Ore Deposit Research, University of Tasmania, 497 p. Jones, S.A., and Berry, R., 2001, Recognition of early growth structures after multiple deformation episodes at Myra Falls VHMS camp, Vancouver Island, B.C., Canada [abs.]: Geological Society of Australia, Specialist Group in Tectonics and Structural Geology, 2001: A Structural Odyssey, Tasmania, Special Publication 64, p. 101-102. Jones, S.A., Gemmell, J.B., Davidson, G.J., and Boliden-Westmin geological staff, 2000, Geological and geochemical characteristics of siliceous cap rocks, Myra Falls VHMS camp, Vancouver Island, B.C., Canada [abs.]: Volcanic Environments and Massive sulfides, Tasmania, University of Tasmania, Centre for Ore Deposit Research Special Publication 3, p. 105-106. Jones, S.A., Herrmann, W., and Gemmell, J.B., 2005, Short-wavelength infrared spectral characteristics of the HW horizon: Implications for exploration in the Myra Falls volcanic-hosted massive sulfide camp, Vancouver Island, B.C., Canada: ECONOMIC GEOLOGY, v. 100, p. 273-294. Juras, S.J., 1987, Geology of the polymetallic volcanogenic Buttle Lake camp, with emphasis on the Price hillside, Central Vancouver Island, British Columbia, Canada: Unpublished Ph.D. thesis, Vancouver, University of British Columbia, 278 p.Juras, S.G. and Pearson, C.A., 1990a, The Buttle Lake camp, Central Vancouver Island, B.C.: Geological Survey of Canada Open File 2167, p. 145-161. --1990b, Mineral deposits of the southern Canadian Cordillera: Geological Association of Canada-Mineral Association of Canada Joint Meeting, Guidebook for Field Trip B2, p. 1-21. Kalogeropoulos, S.I., and Scott, S.D., 1983, Mineralogy and geochemistry of tuffaceous exhalites (tetsusekiei) of the Fukazawa mine, Hokuroko district, Japan: ECONOMIC GEOLOGY MONOGRAPH 5, p. 412-432. --1989, Mineralogy and geochemistry of an Archean tuffaceous exhalite: the Main Contact tuff, Millenbach mine area, Noranda, Quebec: Canadian Journal of Earth Sciences, v. 26, p. 88-105. Khin Zaw, Gemmell, J.B., Large, R.R., Mernagh, T.P., and Ryan, C.G., 1996, Evolution and source of ore fluids in the stringer system, Hellyer VHMS deposit, Tasmania, Australia: Evidence from fluid inclusion microthermometry and geochemisty: Ore Geology Reviews, v. 10, p. 251-278. Knauth, L.P., 1994, Petrogenesis of chert: Reviews in Mineralogy, v. 29, p.231-258. Krom, M.D., and Berner, R.A., 1983, A rapid method for the determination of organic and carbonate carbon in geological samples: Journal of Sedimentary Petrology, v. 53, p. 660-663. Lentz, D.R., and Goodfellow, W.D., 1996, Intense silicification of footwall sedimentary rocks in the stockwork alteration zone beneath the Brunswick no. 12 massive sulfide deposit, Bathurst, New Brunswick: Canadian Journal of Earth Sciences, v. 33, p. 284-302. Leventhal, J., and Taylor, C., 1990, Comparison of methods to determine degree of pyritization: Geochimica et Cosmochimica Acta, v. 54, p. 2621-2625. Lu, K.I., 1983, Geology and geochemistry of the Uchinotai-east ore deposit, Kosaka mine, Akita prefecture, Japan: Mining Geology, v. 33, p. 367-384. Lueders, V., Pracejus, B., and Halbach, P., 2001, Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the Jade hydrothermal field (Central Okinawa trough, Japan): Chemical Geology, v. 173, p. 45-58. Mackenzie, F.T., and Gees, R., 1971, Quartz synthesis at earth-surface conditions: Science, v. 173, p. 533-535. Massey, N.W.D., 1992, Geology and mineral resources of the Duncan sheet, Vancouver Island: Geological Survey of Canada Report 92B/13, 57 p. Masuda, A., and Ikeachi, Y., 1979, Lanthanide tretrad effect observed in marine environment: Geochemical Journal, v. 13, p. 19-22. McLennan, S.M., 1989, Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes: Reviews in Mineralogy, v. 21, p. 169-200. Michard, A. and Albarede, F., 1986, The REE content of some hydrothermal fluids: Chemical Geology, v. 55, p. 51-60. Michard, A., Albarede, F., Michard, G., Minster, J.F. and Charlou, J.L., 1983, Rare earth elements and uranium in high temperature solutions from East Pacific Rise hydrothermal vent field (13C): Nature, v. 303, p. 43-65. Muller, J.E., 1980, The Paleozoic Sicker Group of Vancouver Island, British Columbia: Geological Survey of Canada Paper 79-30, 22 p. Murray, R.W., Marilyn, R., Bucholtz, T.B., Jones, D.L., Gerlach, D.C., and Price, G.R., 1990, Rare earth elements as indicators of different marine depositional environments in chert and shale: Geology, v. 18, p. 268-271. Norrish, K., and Chappel, B.W., 1977, X-ray flourescence spectrometry, in, Hawkesworth, C.J., and Norry, M.J., eds., Continental basalts and mantle xenoliths: Orpington, London, Shiva, and Boston, Birkhauser, p. 230-249. Norrish, K., and Hutton, J.T., 1969, An accurate X-ray spectrographic method for the analysis of a wide range of geological samples: Geochimica et Cosmochimica Acta, v. 33, p. 431-453. OBrien, G.W., Milnes, A.R., Veeh, H.H., Heggie, D.T., Riggs, S.R., Cullen, D.J., Marshall, J.F., and Cook, P.J., 1990, Sedimentation dynamics and redox iron-cycling: Controlling factors for the apatite-glauconite association on the East Australian continental margin: Geological Society Special Publication 52, p. 61-86. Pearson, C.A., 1993, Mining zinc-rich massive sulphide deposits on Vancouver Island, British Columbia [abs.]: Australasian Institute of Mining and Metallurgy, World Zinc -93 International Symposium, Hobart, Australia, Proceedings Volume, v. 7, p. 75-84. Pearson, C.A., Juras, S.J., and McKinley, S. D., 1997, Paleotopography and ore zonation of the H-W and Battle Zn-Cu-Au-Ag VMS deposits, Myra Falls camp, Vancouver Island, British Columbia, Canada, [abs.]: Society of Economic Geologists Field Conference, Neves Corvo, Lisbon, Portugal, Abstracts, p. 67. Peter, J.M., and Goodfellow, W.D., 1996, Mineralogy, bulk and rare earth element geochemistry of massive sulfide-associated hydrothermal sedimentsof the Brunswick Horizon, Bathurst Mining Camp, New Brunswick: Canadian Journal of Earth Sciences, v. 33, p. 252-283. Peter, J.M., and Scott, S.D., 1988, Mineralogy,composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas basin, Gulf of California: Canadian Mineralogist, v. 26, p. 567-587. Peter, J.M., Simoneit, B.R.T., Kawka, O.E., and Scott, S.D., 1990, Liquid hydrocarbon- bearing inclusions in modern hydrothermal chimneys and mounds from the southern trough of Guaymas basin, Gulf of California: Applied Geochemistry, v. 5, p. 51-63. Peter J.M., Goodfellow, W.D., and Leybourne, M., 1994, Fluid inclusion petrography and microthermometry of the Middle Valley hydrothermal system, northern Juan de Fuca Ridge: Proceedings of the Ocean Drilling Program, Scientific Results, v. 139, p. 411-428. Petersen, S., Herzig, P.M., and Hannington, M.D., 2000, Third dimension of a presently forming VMS deposit. TAG hydrothermal mound, Mid-Atlantic Ridge, 26N: Mineralium Deposita, v. 35, p. 233-259. Pollock, S.G., 1990, Chert formation in an Ordovician volcanic arc: Journal of Sedimentary Petrology, v. 57, p. 75-87. Potter, P.E., 1998, Shale-rich basins. Controls and origin, in Schieber, J., Zimmerle, W., and Sethi, P.S., eds., Shales and mudstones I. Basin studies, sedimentology, and paleontology: Stuttgart, E. Schwiezerbart’sche Verlagsbuchhandlung, p. 21-32. Quinby-Hunt, M.S., and Wilde, P., 1994, Thermodynamic zonation in the black shale facies based on iron-manganese-vanadium content: Chemical Geology, v. 113, p. 297-317. Raiswell, R., and Berner, R.A., 1985, Pyrite formation in euxinic and semieuxinic sediments: American Journal of Science, v. 287, p. 33-49. Raiswell, R., Buckley, F., Berner, R.A., and Anderson, T.F., 1988, Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation: Journal of Sedimentary Petrology, v. 58, p. 812-819. Reyes, A.G., 1990, Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment: Journal of Volcanology and Geothermal Research, v. 43, p. 279-309. Rimstidt, J.D., 1997, Gangue mineral transport and deposition, in Barnes H.L., ed., Geochemistry of hydrothermal ore deposits, 3rd ed.: New York, NY, John Wiley and Sons, p. 487-513. Rimstidt, J.D., and Barnes, H.L., 1980, The kinetics of silica-water reactions: Geochimica et Cosmochima Acta, v. 44, p. 1683-1699. Robinson, M., Godwin, C.I., and Stanley, C.R., 1996, Geology, lithogeochemisty, and alteration of the Battle volcanogenic massive sulfide zone, Buttle Lake Mining camp, Vancouver Island, British Columbia: ECONOMIC GEOLOGY, v. 91, p. 527-548. Roedder, E., 1968, The non-colloidal origin of colloform textures in sphalerite ores: ECONOMIC GEOLOGY, v. 63, p. 451-471. --1984, Fluid inclusions: Reviews in Mineralogy, v. 12, 646 p. Roedder, E., and Bodnar, R.J., 1980, Geologic pressure determinations from fluid inclusion studies: Annual Reviews of Earth and Planetary Sciences, v. 18, p. 263-301. Ruaya, J.R., and Seward, T.M., 1986, The stability of chlorozinc (II) complexes in hydrothermal solutions up to 350C: Geochimica et Cosmochimica Acta, v. 50, p. 651-661. Sangster, D.F., 2002, The role of dense brines in the formation of vent-distal sedimentary-exhalative (SEDEX) lead-zinc deposits: Field and laboratory evidence: Mineralium Deposita, v. 37, p. 149-157. Schieber, J., 1996, Early diagenetic silica deposition in algal cysts and spores: A source of sand in black shales?: Journal of Sedimentary Research, v. 66, p. 175-183. --1998, Sedimentary features indicating erosion, condensation, and hiatuses in the Chattanooga Shale of Central Tennessee: Relevance for sedimentary and stratigraphic evolution, in Schieber, J., Zimmerle, W., and Sethi, P.S., eds., Shales and mudstones I. Basin studies, sedimentology, and paleontology: Stuttgart, p. 187-215. Schutter, S.R., 1998, Characteristics of shale deposition, in Schieber, J., Zimmerle, W., and Sethi, P.S., eds., Shales and Mudstones I. Basin Studies, Sedimentology, and Paleontology: Stuttgart, E. Schwiezerbartsche Verlagsbuchhandlung, p. 79-108. Scott, S.D., 1997, Submarine hydrothermal systems and deposits, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, 3rd ed.: New York, NY, John Wiley and Sons, p. 797-860. Seward, T.M., and Barnes, H.L., 1997, Metal transport by hydrothermal ore fluids, in Barnes, H.L. ed., Geochemistry of hydrothermal ore deposits, 3rd ed.: New York, NY, John Wiley and Sons, p. 435-486.Sharpe, R., 1991, The distribution, mineralogy and paragenesis of the Hellyer baritic and siliceous caps: Unpublished B.Sc. Honours thesis, Hobart, University of Tasmania, 114 p. Sherlock, R.L., Roth, T., Spooner, E.T.C., and Bray, C.J., 1999, Origin of the Eskay Creek precious metal-rich volcanogenic massive sulfide deposit: Fluid inclusion and stable isotope evidence: ECONOMIC GEOLOGY, v. 94, p. 803-824. Simonson, B.M., 1985, Sedimentology of cherts in the Early Proterozoic Wishart Formation, Quebec-Newfoundland, Canada: Sedimentology, v. 32, p. 23-40. Sinclair, B.J., 2000, Geology and genesis of the Battle zone VHMS deposits, Myra Falls district, British Columbia, Canada: Unpublished PhD thesis, Hobart, University of Tasmania, 321 p. Sinclair, B.J., Berry, R.F., and Gemmell, J.B., 2000a, Mineralogy and textures of the Battle zone massive sulfide lenses, Myra Falls district, British Columbia, Canada [abs.]: Tasmania, University of Tasmania, Centre for Ore Deposit Research Special Publication 3, p. 197-199. Sinclair, B.J., Gemmell, J.B., and Berry, R.F., 2000b, Formation of the Battle mine massive sulfide deposits, Myra Falls, VHMS district, Vancouver Island, B.C., Canada: Tasmania, University of Tasmania, Centre for Ore Deposit Research Special Publication 3, p. 195-196. Slack, J.F., Kelley, K.D., Anderson, V.M., Clark, J.L., and Ayuso, R.A., 2004, Multistage hydrothermal silicification and Fe-Tl-As-Sb-Ge-REE enrichment in the Red Dog Zn-Pb-Ag district, northern Alaska: Geochemistry, origin, and exploration applications: ECONOMIC GEOLOGY, v. 99, p. 1481-1508.Spry, P.G., and Wonder, J.D., 1989, Manganese-rich rocks associated with the Broken Hill lead-zinc-silver deposit, New South Wales, Australia: Canadian Mineralogist, v. 27, p. 275-292. Spry, P.G., Peter, J.M., and Slack, J.F., 2000, Meta-exhalites as exploration guides to ore: Reviews in Economic Geology, v. 11, p. 163-201. Toyoda, K., and Masuda, A., 1991, Chemical leaching of pelagic sediments: Identification of the carrier of Ce anomaly: Geochemical Journal, v. 25, p.95-119. Turner, J.S., and Campbell, I.H., 1987, Temperature, density and buoyancy fluxes in black smoker plumes, and the criterion for buoyancy reversal: Earth and Planetary Science Letters, v. 73, p. 85-92. Wenger, L.M., and Baker, D.R., 1986, Variations in organic geochemistry of anoxic-oxic black shale-carbonate sequences in the Pennsylvanian of the Midcontinent, U.S.A: Organic Geochemistry, v. 10, p. 85-92. Williams, L.A., Parks, G.A., and Crerar, D.A., 1985, Silica diagenesis, I. Solubility controls: Journal of Sedimentary Petrology, v. 55, p. 301-311. Wilson, P.N., and Petersen, E.U., 1989, Fluid inclusion evidence for fluid mixing in the Oxec Cyprus-type copper deposit, Guatemala: ECONOMIC GEOLOGY, v. 84, p. 44-49. Yu, Z., Robinson, P., and McGoldrick, P., 2001, An evaluation of methods for the chemical decomposition of geological materials for trace element determination using ICP-MS: Journal of Geostandards and Geoanalysis, v. 25,no. 2." name="eprints.referencetext" /> <meta content="Jones, Sarah and Gemmell, J.B. and Davidson, G.J. (2006) Petrographic, Geochemical, and Fluid Inclusion Evidence for the Origin of Siliceous Cap Rocks Above Volcanic-Hosted Massive Sulfide Deposits at Myra Falls, Vancouver Island, British Columbia, Canada. Economic Geology, 101 (3). pp. 555-584. ISSN 0361-0128" name="eprints.citation" /> <meta content="http://eprints.utas.edu.au/1181/1/Jones_et_al.%2C_2006.pdf" name="eprints.document_url" /> <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /> <meta content="Petrographic, Geochemical, and Fluid Inclusion Evidence for the Origin of Siliceous Cap Rocks Above Volcanic-Hosted Massive Sulfide Deposits at Myra Falls, Vancouver Island, British Columbia, Canada" name="DC.title" /> <meta content="Jones, Sarah" name="DC.creator" /> <meta content="Gemmell, J.B." name="DC.creator" /> <meta content="Davidson, G.J." name="DC.creator" /> <meta content="260100 Geology" name="DC.subject" /> <meta content="260000 Earth Sciences" name="DC.subject" /> <meta content="Massive sulfides at the Myra Falls volcanic-hosted massive sulfide (VHMS) camp, Vancouver Island, British Columbia, Canada, are overlain by white chert, black chert, argillite, and siltstone. White chert is best developed above the Battle orebody, where it forms a siliceous caprock (3-5 m thick) above the massive sulfides. There is a gradational lateral change from white chert above massive sulfides to black chert and unaltered argillite, 100 to 150 m south of the Battle orebody. Chert horizons are also located above the Ridge and Extension ore zones, but only minor chert lies above the HW orebody, which is instead overlain by a thick argillite sequence. The chert and argillite share similar sedimentologic and petrologic features, including abundant parallel laminations, interbedded turbidites, radiolarian-rich layers, soft-sediment deformation, scours, flame structures, and small phosphatic concretions. These features indicate that white and black chert formed as a replacement of mudstone rather than as exhalative or biogenic deposits. Silicification occurred early in the depositional history of the fine-grained sediments and was contemporaneous with some ore formation. Early syndepositional features are still visible in the chert, with primary pore spaces such as radiolarian tests filled by silica, rutile, apatite, and minor sulfides displaying open-space crystal growth. The presence of minor ore-clast breccias above the orebody indicates that at least parts of the Battle orebody were exposed on the sea floor. Metal zoning is observed in the cap-rock horizon above the Battle orebody, with higher Cu, Zn, and Cd contentrations in chert directly above massive sulfides, higher Pb, Sb, and Ag contentrations in black chert at the edge of the siliceous cap rocks and lower metal concentrations in the distal argillite. Primary fluid inclusions in spherical quartz patches in chert above the Battle orebody indicate that hydrothermal fluids passing through sediment were between 135 to 250C and had salinities ranging from 3.0 to 12.1 wt percent NaCl equiv. These data are similar to those for fluid inclusions measured in quartz interstitial to sulfides in the underlying Battle orebody, which have temperatures of homogenization ranging from 140 to 250C and salinities from 3.0 to 12.4 wt percent NaCl equiv. Fluid inclusions in the Battle orebody display a slight increase in salinity and homogenization temperature with depth, which may reflect the overprinting of earlier high temperature stages by cooler fluids as the hydrothermal system waned or varying degrees of mixing between hydrothermal fluids and seawater. A minimum depth for deposition of the cap rocks (>200 m) is estimated, based on sedimentologic features such as fine parallel laminations and interbedded sandstone turbidites, which indicate deposition below storm wave base. Greater water depths (1,000-1,500 m) are suggested by the lack of evidence of boiling in fluid inclusions. Low O2 concentrations in the bottom water of the Battle basin are suggested by the absence of bioturbation, lack of fossils of benthic fauna, degree of pyritization values >0.90, elevated Zn, Pb, Cu, Cd, As, Sb, Ag, Ba, and V, low Fe and Mn, and V/(V + Ni) > 0.8 in the unaltered argillite. Paleosea-floor reconstructions indicate that the Battle and HW orebodies formed in small basins along a northwest-trending ridge. The finegrained sediments were deposited in depocenters within paleotopographic lows. Hydrothermal fluid densities, estimated from fluid inclusions at Myra Falls, range from 0.88 to 1.05 g/cm3 and are higher than for many other VHMS deposits. However, they are close to the density of seawater at 2C and a 2,000-m depth (1.028 g/cm3). Replacement textures in the siliceous cap rocks above the Battle deposit, the sheetlike morphology of the siliceous cap rocks, and lateral metal zonation indicates that diffuse lateral flow of hydrothermal fluids through the porous sea-floor sediments was more important than the buoyant rise of hydrothermal fluids into the water column. However, buoyant venting during formation of the Battle deposit is indicated by positive Eu anomalies and elevated metal values in argillite of the Battle basin, reflecting the wide dispersal of plume particulates. The range of fluid densities indicate that the hydrothermal fluids emerging onto the sea floor and flowing laterally through porous sea-floor sediments would have varied from buoyant to neutrally buoyant, to negatively buoyant." name="DC.description" /> <meta content="2006-05" name="DC.date" /> <meta content="Article" name="DC.type" /> <meta content="PeerReviewed" name="DC.type" /> <meta content="application/pdf" name="DC.format" /> <meta content="http://eprints.utas.edu.au/1181/1/Jones_et_al.%2C_2006.pdf" name="DC.identifier" /> <meta content="http://dx.doi.org/10.2113/gsecongeo.101.3.555" name="DC.relation" /> <meta content="Jones, Sarah and Gemmell, J.B. and Davidson, G.J. (2006) Petrographic, Geochemical, and Fluid Inclusion Evidence for the Origin of Siliceous Cap Rocks Above Volcanic-Hosted Massive Sulfide Deposits at Myra Falls, Vancouver Island, British Columbia, Canada. Economic Geology, 101 (3). pp. 555-584. ISSN 0361-0128" name="DC.identifier" /> <meta content="http://eprints.utas.edu.au/1181/" name="DC.relation" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/BibTeX/epprod-eprint-1181.bib" title="BibTeX" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/ContextObject/epprod-eprint-1181.xml" title="OpenURL ContextObject" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/ContextObject::Dissertation/epprod-eprint-1181.xml" title="OpenURL Dissertation" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/ContextObject::Journal/epprod-eprint-1181.xml" title="OpenURL Journal" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/DC/epprod-eprint-1181.txt" title="Dublin Core" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/DIDL/epprod-eprint-1181.xml" title="DIDL" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/EndNote/epprod-eprint-1181.enw" title="EndNote" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/HTML/epprod-eprint-1181.html" title="HTML Citation" type="text/html; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/METS/epprod-eprint-1181.xml" title="METS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/MODS/epprod-eprint-1181.xml" title="MODS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/RIS/epprod-eprint-1181.ris" title="Reference Manager" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/Refer/epprod-eprint-1181.refer" title="Refer" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/Simple/epprod-eprint-1181text" title="Simple Metadata" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/Text/epprod-eprint-1181.txt" title="ASCII Citation" type="text/plain; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1181/XML/epprod-eprint-1181.xml" title="EP3 XML" type="text/xml" /> </head> <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')"> <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div> <table width="795" border="0" cellspacing="0" cellpadding="0"> <tr> <td><script language="JavaScript1.2">mmLoadMenus();</script> <table border="0" cellpadding="0" cellspacing="0" width="795"> <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" --> <tr> <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td> </tr> <tr> <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td> <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td> <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td> <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td> </tr> <tr> <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td> <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td> <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td> <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td> <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td> <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td> <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td> <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td> <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td> <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td> </tr> <tr> <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td> <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td> </tr> </table></td> </tr> <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr> <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td> <td align="right" style="white-space: nowrap"> <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline"> <input class="ep_tm_searchbarbox" size="20" type="text" name="q" /> <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" /> <input type="hidden" name="_order" value="bytitle" /> <input type="hidden" name="basic_srchtype" value="ALL" /> <input type="hidden" name="_satisfyall" value="ALL" /> </form> </td> </tr></table></td></tr> <tr> <td class="toplinks"><!-- InstanceBeginEditable name="content" --> <div align="center"> <table width="720" class="ep_tm_main"><tr><td align="left"> <h1 class="ep_tm_pagetitle">Petrographic, Geochemical, and Fluid Inclusion Evidence for the Origin of Siliceous Cap Rocks Above Volcanic-Hosted Massive Sulfide Deposits at Myra Falls, Vancouver Island, British Columbia, Canada</h1> <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Jones, Sarah</span> and <span class="person_name">Gemmell, J.B.</span> and <span class="person_name">Davidson, G.J.</span> (2006) <xhtml:em>Petrographic, Geochemical, and Fluid Inclusion Evidence for the Origin of Siliceous Cap Rocks Above Volcanic-Hosted Massive Sulfide Deposits at Myra Falls, Vancouver Island, British Columbia, Canada.</xhtml:em> Economic Geology, 101 (3). pp. 555-584. ISSN 0361-0128</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/1181/1/Jones_et_al.%2C_2006.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/1181/1/Jones_et_al.%2C_2006.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />851Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="1525" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.2113/gsecongeo.101.3.555">http://dx.doi.org/10.2113/gsecongeo.101.3.555</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Massive sulfides at the Myra Falls volcanic-hosted massive sulfide (VHMS) camp, Vancouver Island, British Columbia, Canada, are overlain by white chert, black chert, argillite, and siltstone. White chert is best developed above the Battle orebody, where it forms a siliceous caprock (3-5 m thick) above the massive sulfides. There is a gradational lateral change from white chert above massive sulfides to black chert and unaltered argillite, 100 to 150 m south of the Battle orebody. Chert horizons are also located above the Ridge and Extension ore zones, but only minor chert lies above the HW orebody, which is instead overlain by a thick argillite sequence. The chert and argillite share similar sedimentologic and petrologic features, including abundant parallel laminations, interbedded turbidites, radiolarian-rich layers, soft-sediment deformation, scours, flame structures, and small phosphatic concretions. These features indicate that white and black chert formed as a replacement of mudstone rather than as exhalative or biogenic deposits. Silicification occurred early in the depositional history of the fine-grained sediments and was contemporaneous with some ore formation. Early syndepositional features are still visible in the chert, with primary pore spaces such as radiolarian tests filled by silica, rutile, apatite, and minor sulfides displaying open-space crystal growth. The presence of minor ore-clast breccias above the orebody indicates that at least parts of the Battle orebody were exposed on the sea floor. Metal zoning is observed in the cap-rock horizon above the Battle orebody, with higher Cu, Zn, and Cd contentrations in chert directly above massive sulfides, higher Pb, Sb, and Ag contentrations in black chert at the edge of the siliceous cap rocks and lower metal concentrations in the distal argillite. Primary fluid inclusions in spherical quartz patches in chert above the Battle orebody indicate that hydrothermal fluids passing through sediment were between 135 to 250C and had salinities ranging from 3.0 to 12.1 wt percent NaCl equiv. These data are similar to those for fluid inclusions measured in quartz interstitial to sulfides in the underlying Battle orebody, which have temperatures of homogenization ranging from 140 to 250C and salinities from 3.0 to 12.4 wt percent NaCl equiv. Fluid inclusions in the Battle orebody display a slight increase in salinity and homogenization temperature with depth, which may reflect the overprinting of earlier high temperature stages by cooler fluids as the hydrothermal system waned or varying degrees of mixing between hydrothermal fluids and seawater. A minimum depth for deposition of the cap rocks (>200 m) is estimated, based on sedimentologic features such as fine parallel laminations and interbedded sandstone turbidites, which indicate deposition below storm wave base. Greater water depths (1,000-1,500 m) are suggested by the lack of evidence of boiling in fluid inclusions. Low O2 concentrations in the bottom water of the Battle basin are suggested by the absence of bioturbation, lack of fossils of benthic fauna, degree of pyritization values >0.90, elevated Zn, Pb, Cu, Cd, As, Sb, Ag, Ba, and V, low Fe and Mn, and V/(V + Ni) > 0.8 in the unaltered argillite. Paleosea-floor reconstructions indicate that the Battle and HW orebodies formed in small basins along a northwest-trending ridge. The finegrained sediments were deposited in depocenters within paleotopographic lows. Hydrothermal fluid densities, estimated from fluid inclusions at Myra Falls, range from 0.88 to 1.05 g/cm3 and are higher than for many other VHMS deposits. However, they are close to the density of seawater at 2C and a 2,000-m depth (1.028 g/cm3). Replacement textures in the siliceous cap rocks above the Battle deposit, the sheetlike morphology of the siliceous cap rocks, and lateral metal zonation indicates that diffuse lateral flow of hydrothermal fluids through the porous sea-floor sediments was more important than the buoyant rise of hydrothermal fluids into the water column. However, buoyant venting during formation of the Battle deposit is indicated by positive Eu anomalies and elevated metal values in argillite of the Battle basin, reflecting the wide dispersal of plume particulates. The range of fluid densities indicate that the hydrothermal fluids emerging onto the sea floor and flowing laterally through porous sea-floor sediments would have varied from buoyant to neutrally buoyant, to negatively buoyant.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">Definitive version available at http://econgeol.geoscienceworld.org/</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">chert, argillite, Devonian, fluid inclusions, exhalite, replacement, alteration, ore deposit genesis</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences > 260100 Geology</a><br /><a href="http://eprints.utas.edu.au/view/subjects/260000.html">260000 Earth Sciences</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1181</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">21 Jun 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1181;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=1181">item control page</a></p> </td></tr></table> </div> <!-- InstanceEndEditable --></td> </tr> <tr> <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" --> <table width="795" border="0" align="left" cellpadding="0" class="footer"> <tr valign="top"> <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td> </tr> <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr> <tr valign="top"> <td width="68%" class="footer">Authorised by the University Librarian<br /> © University of Tasmania ABN 30 764 374 782<br /> <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td> <td width="32%"><div align="right"> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br /> </a></p> </div></td> </tr> <tr valign="top"> <td><p> </p></td> <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td> </tr> </table> <!-- #EndLibraryItem --> <div align="center"></div></td> </tr> </table> </body> </html>