<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head> <title>UTas ePrints - Geochemical Anatomy of Silica Iron Exhalites: Evidence for Hydrothermal Oxyanion Cycling in Response to Vent Fluid Redox and Thermal Evolution (Mt. Windsor Subprovince, Australia)</title> <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script> <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style> <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style> <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="Top" href="http://eprints.utas.edu.au/" /> <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" /> <meta content="Davidson, G.J." name="eprints.creators_name" /> <meta content="Stolz, A.J." name="eprints.creators_name" /> <meta content="Eggins, S.M." name="eprints.creators_name" /> <meta content="Garry.Davidson@utas.edu.au" name="eprints.creators_id" /> <meta name="eprints.creators_id" /> <meta name="eprints.creators_id" /> <meta content="article" name="eprints.type" /> <meta content="2007-09-04" name="eprints.datestamp" /> <meta content="2008-01-23T04:50:41Z" name="eprints.lastmod" /> <meta content="show" name="eprints.metadata_visibility" /> <meta content="Geochemical Anatomy of Silica Iron Exhalites: Evidence for Hydrothermal Oxyanion Cycling in Response to Vent Fluid Redox and Thermal Evolution (Mt. Windsor Subprovince, Australia)" name="eprints.title" /> <meta content="pub" name="eprints.ispublished" /> <meta content="260300" name="eprints.subjects" /> <meta content="260100" name="eprints.subjects" /> <meta content="restricted" name="eprints.full_text_status" /> <meta content="exhalites, iron-silica chemical sediment, microbial, hydrothermal,volcanogenic massive sulfide mineralisation, Cambrian, inorganic geochemistry, radiogenic isotopes, chlorite-carbonate alteration, mineral exploration, Mount Windsor Volcanics, Queensland " name="eprints.keywords" /> <meta content="The definitive version is available online at http://econgeol.geoscienceworld.org/" name="eprints.note" /> <meta content="In the Cambro-Ordovician Mount Windsor subprovince, well known for its massive sulfide deposits, silica iron oxide exhalites possess complex textural and geochemical features that provide an insight into the very early stages of typical massive sulfide deposit development. In exploration they are also useful for identifying hotter systems most likely to host massive sulfide deposits. Three examples were mapped and sampled from outcrop and analyzed for magnetic susceptibility, major and trace elements, REE, and Nd and Sr radiogenic isotopes. They share a common evolutional history. Early microbially mediated silica iron oxyhydroxides (stage 1), which grew with very little clastic sediment incorporation, probably developed an Fe, U, V, Mo, As, Ag, Cd, P, Y, Be, Mg, and REE element association that has also been documented from metalliferous sediments on the modern sea floor. This stage is commonly overprinted by siliceous veins (stage 2), indicating that the exhalites directly overlay diffuse hydrothermal upflow zones. Less commonly, the silicification assemblage includes pyrite. Y, U, Be, V, and Mg positive correlations with Fe survived the subsurface silicification. Ag, As, Mo, Sb, REE, and Ba were leached from stage 1 zones during stage 2, presumably liberated during recrystallization of iron oxyhydroxide and were reprecipitated in narrow crosscutting zones within stage 2 silicification. The depositional mechanism is not well understood, but radiogenic isotope trends indicate that interaction between hydrothermal fluid and detrital silicates preferentially precipitated some of these metals. The hydrothermal transition from low-temperature (less than 100 degrees C) oxidized to higher temperature ( more than 150 degrees C), H2S-bearing volcanic-hosted massive sulfide (VHMS)-style fluids in some systems is evidenced by the addition of Cu, Pb, Zn, Tl, Mn, Se, and possibly Eu, mainly as trace elements in pyrite. The Sr and Nd isotope systematics of the jaspers can be explained for stage 1 by mixing of seawater, clastic, and hydrothermal end members, giving rise to complex isotopic populations. The stage 1 signatures are supplanted by relatively simple isotopic compositions with increasing stage 2 alteration intensity. This replacement is best expressed in plots of resistant detrital elements and metals such as As, Se, Zn, and Pb versus epsilon Nd and 87Sr/86Sri. The hydrothermal component has epsilon Nd(480 Ma) ~ -2, best explained by leaching of the underlying Trooper Creek Formation (epsilon Nd (480 Ma) = +3.8 to -7.3) rather than leaching of deeper Mount Windsor Formation rhyolitic volcanics (epsilon Nd (480 Ma) = -4.7 to -12.8). There is no support for a magmatic fluid, because no match exists with the known Trooper Creek Formation epsilon Nd(480 Ma) magmatic populations (epsilon Nd (480 Ma) = -4.1 to -7.3 and +3.8 to -0.9). The radiogenic isotopes support a shallow convecting model with jasper deposition from rockbuffered seawater. The evolution of fluids from cooler, oxidized to hotter, reduced conditions, either records heating induced by arrival of a subsurface thermal plume or the propagation of extensional faults deeper into a layered convective system." name="eprints.abstract" /> <meta content="2001-08" name="eprints.date" /> <meta content="published" name="eprints.date_type" /> <meta content="Economic Geology" name="eprints.publication" /> <meta content="96" name="eprints.volume" /> <meta content="5" name="eprints.number" /> <meta content="1201-1226" name="eprints.pagerange" /> <meta content="10.2113/96.5.1201" name="eprints.id_number" /> <meta content="UNSPECIFIED" name="eprints.thesis_type" /> <meta content="TRUE" name="eprints.refereed" /> <meta content="0361-0128" name="eprints.issn" /> <meta content="http://dx.doi.org/10.2113/96.5.1201" name="eprints.official_url" /> <meta content="Adachi, M., Yamamoto, K., and Sugisaki, R., 1986, Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their geological significance as indication of ocean ridge activity: Sedimentary Geology, v. 47, p. 125-148. Albarede, F., and Goldstein, S.L., 1992, World map of Nd isotopes in seafloor ferromanganese deposits: Geology, v. 20, p. 761-763. Alt, J.C., 1988, Hydrothermal oxide and nontronite deposits on seamounts in the Eastern Pacific: Marine Geology, v. 81, p. 227-239. Barrett, T.J., Jarvis, I., and Jarvis, K.E., 1990, Rare earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge: Geology, v. 18, p. 583-586. Berry, R.F., Huston, D.L., Stolz, A.J., Hill, A.P., Beams, S.D., Kuronen, U., and Taube, A., 1992, Stratigraphy, structure, and volcanic-hosted mineralization of the Mount Windsor subprovince, North Queensland, Australia: ECONOMIC GEOLOGY, v. 87, p. 739-763. Boyd, T., Scott, S.D., and Hekinian, R., 1993, Trace element patterns in Fe-Si-Mn oxyhydroxides at three hydrothermally active seafloor regions: Resource Geology Special Issue, v. 17, p. 83-95. Broecker, W.S., and Peng, T.-H., 1982, Tracers in the sea: Palisades, NY, Lamont-Doherty Geological Observatory, 690 p. Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., and Otto, J.B., 1982, Variation of seawater 87Sr/86Sr throughout Phanerozoic time: Geology, v. 10, p. 516-519. Davidson, G.J., Eggins, S.M., and McCulloch, M.T., 1993, Detailed rare earth element (REE) geochemical anatomy of an ancient ferruginous chert lens, northern Australia: A preliminary report: RIDGE Theoretical Institute, Physical, Chemical, Biological and Geological Interactions within Seafloor Hydrothermal Systems, 3rd, Big Sky, Montana, August 28, 1993, Proceedings, p. T10. Doyle M., 1997, A Cambro-Ordovician volcanic succession hosting massive sulfide mineralisation: Mt Windsor subprovince, Qld: Unpublished Ph.D thesis, Hobart, Tasmania, University of Tasmania, 279 p. Duhig, N.C., 1991, The geology of East Waddys mill and the geochemical and textural aspects of ironstone near Thalanga, north Queensland: Unpublished Honors thesis, Hobart, Tasmania, University of Tasmania, 116 p. Duhig, N.C., Davidson, G.J., and Stolz, J., 1992a, Microbial involvement in the formation of Cambrian seafloor silica iron oxide deposits, Australia: Geology, v. 20, p. 511-514. Duhig, N.C., Stolz, J., Davidson, G.J., and Large, R.R., 1992b, Cambrian microbial and silica gel textures preserved in silica iron exhalites from the Mount Windsor volcanic belt, Australia: Their petrography, chemistry, and origin: ECONOMIC GEOLOGY, v. 87, p. 764-784. Dymond, J., 1981, Geochemistry of Nazca Plate surface sediments: An evaluation of hydrothermal, biogenic, detrital and hydrogenous sources: Geological Society of America Memoir, v. 154, p. 133-170. Eggins, S.M., Woodhead, J.D., Kinsley. L.P., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M., and Handler, M.R., 1997, A simple method for the precise determination of more than or equal to 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation: Chemical Geology, v. 134, p. 311-326. Feely, R.A., Massoth, G.J., Trefry, J.H., and Metz, S., 1990, The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific: Earth and Planetary Science Letters, v. 96, p. 305-318. Gale, G.H., Dabek, L.B., and Fedikow, M.A.F., 1997, The application of rare earth element analyses in the exploration for volcanogenic massive sulphide type deposits: Exploration Mining Geology, v. 6, p. 233-252. Galley, A.G., 1993, Characteristics of semi-conformable alteration zones associated with volcanogenic massive sulfide districts: Journal of Geochemical Exploration, v. 48, p. 175-200. German, C.R., Campbell, A.C., and Edmond, J.M., 1991a, Hydrothermal scavenging at the Mid-Atlantic Ridge: Modification of trace element dissolved fluxes: Earth and Planetary Science Letters, v. 107, p. 101-114. German, C.R., Klinkhammer, J.M., Edmond, J.M., Mitra, A., and Elderfield, H., 1991b, Hydrothermal scavenging of rare earth elements in the ocean: Nature, v. 345, p. 516-518. German, C.R., Fleet, A.P., Bacon, M.P., and Edmond, J.M., 1991c, Hydrothermal scavenging at the Mid-Atlantic Ridge: Radionuclide distributions: Earth and Planetary Science Letters, v. 105, p. 170-181. Halliday, A.N., Davidson, J.P., Holden, P., Owen, R.M., and Olivarez, A.M., 1992, Metalliferous sediments and the scavenging residence time of Nd near hydrothermal vents: Geophysical Research Letters, v. 19, p. 761-764. Hein, J.R., Koschinsky, A., Halbach, P., Manheim, F.T., Bau, M., Kang, J-K., and Lubick, N., 1997, Iron and manganese oxide mineralization in the Pacific: Geological Society [London] Special Publication, v. 119, p. 123-138. Hem, J.D., Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions: Chemical Geology, v. 21, p. 199-218. Henderson, R.A., 1986, Geology of the Mt Windsor subprovince-a lower Palaeozoic volcano-sedimentary terrane in the northern Tasman orogenic zone: Australian Journal of Earth Science, v. 33, p. 343-364. Huston, D.L., and Large, R.R., 1989, A chemical model for the concentration of gold in volcanogenic massive sulphide deposits: Ore Geology Reviews, v. 4, p. 171-200. Ishikawa, Y., Sawaguchi, T., Iwaya, S., and Horiuchi, M., 1976, Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos: Mining Geology, v. 26, p. 105-117 (in Japanese with English abs.). Juniper, S.K., and Fouquet, Y., 1988, Filamentous iron-silica deposits from modern and ancient hydrothermal sites: Canadian Mineralogist, v. 26, p. 859-869. Juniper, S.K., and Sarrazin, J., 1995, Interaction of vent biota and hydrothermal deposits: Present evidence and future experimentation: American Geophysical Union Geophysical Monograph, v. 91, p. 392-407. Kalogeropoulos, S.I., and Scott, S.D., 1983, Mineralogy and geochemistry of tuffaceous exhalites (tetsusekiei) of the Fukazawa mine, Hokuroku district, Japan: ECONOMIC GEOLOGY MONOGRAPH 5, p. 412-432. -1989, Mineralogy and geochemistry of an Archean tuffaceous exhalite: The Main Contact Tuff, Millenbach mine area, Noranda, Quebec: Canadian Journal of Earth Science, v. 26, p. 88-105. Keto, L.S., and Jacobsen, S.B., 1988, Nd isotopic variations of Phanerozoic paleooceans: Earth and Planetary Science Letters, v. 90, p. 395-410. Kneller, W.A., Kriege, H.F., Saxer, E.L., Wilband, J.T., and Rohrbacher, T.J., 1968, The properties and recognition of deleterious cherts which occur in aggregate used by Ohio concrete producers: Research Foundation, Toledo, Ohio, University of Toledo, 201 p. Koschinsky, A., and Hallbach, P., 1995, Sequential leaching of marine ferromanganese precipitates: Genetic implications: Geochimica et Cosmochimica Acta, v. 59, p. 5113-5132. Koski, R.A., Clague, D.A., Kadko, D.C., Smith, V.K., and Wong, F.L., 1994, Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the Northern Cleft segment, Juan de Fuca Ridge: Journal of Geophysical Research, v. 98, p. 9705-9713. Large, R.R., Gemmell, J.B., Paulick, H., and Huston, D.L., 2001, The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic- hosted massive sulfide deposits: ECONOMIC GEOLOGY, v. 96, p. 957-971. Liaghat, S., and MacLean, W.H., 1992, The Key Tuffite, Matagami mining district: Origin of the tuff components and mass changes: Exploration and Mining Geology, v. 1, p 197-207. Lottermoser, B., 1989, Rare earth element study of exhalites within the Willyama Supergroup, Broken Hill block, Australia: Mineralium Deposita, v. 24, p. 92-99. McLennan, S.M., 1989, Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes: Reviews in Mineralogy, v. 21, p.169-200. Metz, S., and Trefry, J.H., 1993, Field and laboratory studies of metal uptake and release by hydrothermal precipitates: Journal of Geophysical Research, v. 98, p. 9661-9666. -2000, Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids: Geochimica et Cosmochimica Acta, v. 64, p. 2267-2279. Michard, A., and Albarede, F., 1986, The REE content of some hydrothermal fluids: Chemical Geology, v. 55, p. 51-60. Michard, A., Albarede, F., Michard, G., Minster, J.F., and Charlou, J.L., 1983, Rare earth elements and uranium in high temperature solutions from East Pacific Rise hydrothermal vent field (13 degree N): Nature, v. 303, p. 43-65. Mills, R., and Elderfield, H., 1993, A dual origin for the hydrothermal component in a metalliferous sediment core from the Mid-Atlantic Ridge: Journal of Geophysical Research, v. 98, p. 9671-9681. -1995, Hydrothermal activity and the geochemistry of metalliferous sediment: American Geophysical Union Geophysical Monograph, v. 91, p. 392-407. Mulholland I.R., 1991, The geology, petrology, and alteration geochemistry of the Magpie volcanogenic massive sulfide prospect, north Queensland, Australia: ECONOMIC GEOLOGY, v. 86, p. 1387-1400. Paulick, H., Herrmann, W., and Gemmell, J.B., 2001, Alteration of felsic volcanics hosting the Thalanga massive sulfide deposit, North Queensland, Australia: Geochemical proximity indicators to ore: ECONOMIC GEOLOGY, v. 96, p. 1175-1200. Peter, J.M., and Goodfellow, W.D., 1996, Mineralogy, bulk and rare earth element geochemistry of massive sulphide-associated hydrothermal sediments of the Brunswick horizon, Bathurst mining camp, New Brunswick: Canadian Journal of Earth Science, v. 33, p. 252-283. Rudnicki, M.D., and Elderfield, H., 1993, A chemical model of the bouyant and neutrally bouyant plume above the TAG vent filed, 26 degrees N, mid-Atlantic Ridge: Geochimica et Cosmochimica Acta, v. 57, p. 2939-2957. Ruhlin, D.E., and Owen, R.M., 1986, The rare earth element geochemistry of hydrothermal sediments for the East Pacific Rise: Examination of a seawater scavenging mechanism: Geochimica et Cosmochimica Acta, v. 50, p. 393-400. Schaller, T., Morford, J., Emerson, S.R., and Feely, R.A., 2000, Oxyanions in metalliferous sediments: Tracers for paleoseawater metal concentrations?: Geochimica et Cosmochimica Acta, v. 63, p. 2243-2254. Spry, P.G., Peter, J.M., and Slack J.F., 2000, Meta-exhalites as exploration guides to ore: Reviews in Economic Geology, v. 11, p. 163-201. Stolz, A.J., 1995, Geochemistry of the Mount Windsor Volcanics: Implications for the tectonic setting of Cambro-Ordovician volcanic-hosted massive sulfide mineralization in northeastern Australia: ECONOMIC GEOLOGY, v. 90, p. 1080-1097. Taylor, S.R., and Gorton, M.P., 1977, Geochemical applications of sparksource mass spectrography, III. Element senstitivity, precision and accuracy: Geochimica et Cosmochimica Acta, v. 41, p. 1375-1380. Teagle, D.A.H., Alt, J.D., Chiba, H., and Halliday, A.N., 1998, Dissecting an active hydrothermal deposit: The strontium and oxygen isotopic anatomy of the TAG hydrothermal mound-anhydrite: Proceedings of the Ocean Drilling Program, Scientific Results, v. 158, p. 129-141. Toyoda, J., and Masuda, A., 1991, Chemical leaching of pelagic sediments: Identification of the carrier of the Ce anomaly: Geochemical Journal, v. 25, p. 95-119. Trefry, J.H., and Metz, S., 1989, Role of hydrothermal precipitates in the geochemical cycling of vanadium: Nature, v. 342, p. 531-533. Usui, A., and Someya, M., 1997, Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific: Geological Society [London] Special Publication, v. 119, p. 177-198. Zierenberg, R.A., and Schiffman, P., 1990, Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge: Nature, v. 348, p. 155-157." name="eprints.referencetext" /> <meta content="Davidson, G.J. and Stolz, A.J. and Eggins, S.M. (2001) Geochemical Anatomy of Silica Iron Exhalites: Evidence for Hydrothermal Oxyanion Cycling in Response to Vent Fluid Redox and Thermal Evolution (Mt. Windsor Subprovince, Australia). Economic Geology, 96 (5). pp. 1201-1226. ISSN 0361-0128" name="eprints.citation" /> <meta content="http://eprints.utas.edu.au/1844/1/Davidson%2C_Stolz%2C_Eggins_ECON_GEOL_2001.pdf" name="eprints.document_url" /> <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /> <meta content="Geochemical Anatomy of Silica Iron Exhalites: Evidence for Hydrothermal Oxyanion Cycling in Response to Vent Fluid Redox and Thermal Evolution (Mt. Windsor Subprovince, Australia)" name="DC.title" /> <meta content="Davidson, G.J." name="DC.creator" /> <meta content="Stolz, A.J." name="DC.creator" /> <meta content="Eggins, S.M." name="DC.creator" /> <meta content="260300 Geochemistry" name="DC.subject" /> <meta content="260100 Geology" name="DC.subject" /> <meta content="In the Cambro-Ordovician Mount Windsor subprovince, well known for its massive sulfide deposits, silica iron oxide exhalites possess complex textural and geochemical features that provide an insight into the very early stages of typical massive sulfide deposit development. In exploration they are also useful for identifying hotter systems most likely to host massive sulfide deposits. Three examples were mapped and sampled from outcrop and analyzed for magnetic susceptibility, major and trace elements, REE, and Nd and Sr radiogenic isotopes. They share a common evolutional history. Early microbially mediated silica iron oxyhydroxides (stage 1), which grew with very little clastic sediment incorporation, probably developed an Fe, U, V, Mo, As, Ag, Cd, P, Y, Be, Mg, and REE element association that has also been documented from metalliferous sediments on the modern sea floor. This stage is commonly overprinted by siliceous veins (stage 2), indicating that the exhalites directly overlay diffuse hydrothermal upflow zones. Less commonly, the silicification assemblage includes pyrite. Y, U, Be, V, and Mg positive correlations with Fe survived the subsurface silicification. Ag, As, Mo, Sb, REE, and Ba were leached from stage 1 zones during stage 2, presumably liberated during recrystallization of iron oxyhydroxide and were reprecipitated in narrow crosscutting zones within stage 2 silicification. The depositional mechanism is not well understood, but radiogenic isotope trends indicate that interaction between hydrothermal fluid and detrital silicates preferentially precipitated some of these metals. The hydrothermal transition from low-temperature (less than 100 degrees C) oxidized to higher temperature ( more than 150 degrees C), H2S-bearing volcanic-hosted massive sulfide (VHMS)-style fluids in some systems is evidenced by the addition of Cu, Pb, Zn, Tl, Mn, Se, and possibly Eu, mainly as trace elements in pyrite. The Sr and Nd isotope systematics of the jaspers can be explained for stage 1 by mixing of seawater, clastic, and hydrothermal end members, giving rise to complex isotopic populations. The stage 1 signatures are supplanted by relatively simple isotopic compositions with increasing stage 2 alteration intensity. This replacement is best expressed in plots of resistant detrital elements and metals such as As, Se, Zn, and Pb versus epsilon Nd and 87Sr/86Sri. The hydrothermal component has epsilon Nd(480 Ma) ~ -2, best explained by leaching of the underlying Trooper Creek Formation (epsilon Nd (480 Ma) = +3.8 to -7.3) rather than leaching of deeper Mount Windsor Formation rhyolitic volcanics (epsilon Nd (480 Ma) = -4.7 to -12.8). There is no support for a magmatic fluid, because no match exists with the known Trooper Creek Formation epsilon Nd(480 Ma) magmatic populations (epsilon Nd (480 Ma) = -4.1 to -7.3 and +3.8 to -0.9). The radiogenic isotopes support a shallow convecting model with jasper deposition from rockbuffered seawater. The evolution of fluids from cooler, oxidized to hotter, reduced conditions, either records heating induced by arrival of a subsurface thermal plume or the propagation of extensional faults deeper into a layered convective system." name="DC.description" /> <meta content="2001-08" name="DC.date" /> <meta content="Article" name="DC.type" /> <meta content="PeerReviewed" name="DC.type" /> <meta content="application/pdf" name="DC.format" /> <meta content="http://eprints.utas.edu.au/1844/1/Davidson%2C_Stolz%2C_Eggins_ECON_GEOL_2001.pdf" name="DC.identifier" /> <meta content="http://dx.doi.org/10.2113/96.5.1201" name="DC.relation" /> <meta content="Davidson, G.J. and Stolz, A.J. and Eggins, S.M. (2001) Geochemical Anatomy of Silica Iron Exhalites: Evidence for Hydrothermal Oxyanion Cycling in Response to Vent Fluid Redox and Thermal Evolution (Mt. Windsor Subprovince, Australia). Economic Geology, 96 (5). pp. 1201-1226. ISSN 0361-0128" name="DC.identifier" /> <meta content="http://eprints.utas.edu.au/1844/" name="DC.relation" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/BibTeX/epprod-eprint-1844.bib" title="BibTeX" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/ContextObject/epprod-eprint-1844.xml" title="OpenURL ContextObject" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/ContextObject::Dissertation/epprod-eprint-1844.xml" title="OpenURL Dissertation" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/ContextObject::Journal/epprod-eprint-1844.xml" title="OpenURL Journal" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/DC/epprod-eprint-1844.txt" title="Dublin Core" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/DIDL/epprod-eprint-1844.xml" title="DIDL" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/EndNote/epprod-eprint-1844.enw" title="EndNote" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/HTML/epprod-eprint-1844.html" title="HTML Citation" type="text/html; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/METS/epprod-eprint-1844.xml" title="METS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/MODS/epprod-eprint-1844.xml" title="MODS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/RIS/epprod-eprint-1844.ris" title="Reference Manager" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/Refer/epprod-eprint-1844.refer" title="Refer" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/Simple/epprod-eprint-1844text" title="Simple Metadata" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/Text/epprod-eprint-1844.txt" title="ASCII Citation" type="text/plain; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1844/XML/epprod-eprint-1844.xml" title="EP3 XML" type="text/xml" /> </head> <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')"> <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div> <table width="795" border="0" cellspacing="0" cellpadding="0"> <tr> <td><script language="JavaScript1.2">mmLoadMenus();</script> <table border="0" cellpadding="0" cellspacing="0" width="795"> <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" --> <tr> <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td> </tr> <tr> <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td> <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td> <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td> <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td> </tr> <tr> <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td> <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td> <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td> <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td> <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td> <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td> <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td> <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td> <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td> <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td> </tr> <tr> <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td> <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td> </tr> </table></td> </tr> <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr> <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td> <td align="right" style="white-space: nowrap"> <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline"> <input class="ep_tm_searchbarbox" size="20" type="text" name="q" /> <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" /> <input type="hidden" name="_order" value="bytitle" /> <input type="hidden" name="basic_srchtype" value="ALL" /> <input type="hidden" name="_satisfyall" value="ALL" /> </form> </td> </tr></table></td></tr> <tr> <td class="toplinks"><!-- InstanceBeginEditable name="content" --> <div align="center"> <table width="720" class="ep_tm_main"><tr><td align="left"> <h1 class="ep_tm_pagetitle">Geochemical Anatomy of Silica Iron Exhalites: Evidence for Hydrothermal Oxyanion Cycling in Response to Vent Fluid Redox and Thermal Evolution (Mt. Windsor Subprovince, Australia)</h1> <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Davidson, G.J.</span> and <span class="person_name">Stolz, A.J.</span> and <span class="person_name">Eggins, S.M.</span> (2001) <xhtml:em>Geochemical Anatomy of Silica Iron Exhalites: Evidence for Hydrothermal Oxyanion Cycling in Response to Vent Fluid Redox and Thermal Evolution (Mt. Windsor Subprovince, Australia).</xhtml:em> Economic Geology, 96 (5). pp. 1201-1226. ISSN 0361-0128</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/1844/1/Davidson%2C_Stolz%2C_Eggins_ECON_GEOL_2001.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" border="0" class="ep_doc_icon" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/1844/1/Davidson%2C_Stolz%2C_Eggins_ECON_GEOL_2001.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />820Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input value="2316" name="docid" accept-charset="utf-8" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.2113/96.5.1201">http://dx.doi.org/10.2113/96.5.1201</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">In the Cambro-Ordovician Mount Windsor subprovince, well known for its massive sulfide deposits, silica iron oxide exhalites possess complex textural and geochemical features that provide an insight into the very early stages of typical massive sulfide deposit development. In exploration they are also useful for identifying hotter systems most likely to host massive sulfide deposits. Three examples were mapped and sampled from outcrop and analyzed for magnetic susceptibility, major and trace elements, REE, and Nd and Sr radiogenic isotopes. They share a common evolutional history. Early microbially mediated silica iron oxyhydroxides (stage 1), which grew with very little clastic sediment incorporation, probably developed an Fe, U, V, Mo, As, Ag, Cd, P, Y, Be, Mg, and REE element association that has also been documented from metalliferous sediments on the modern sea floor. This stage is commonly overprinted by siliceous veins (stage 2), indicating that the exhalites directly overlay diffuse hydrothermal upflow zones. Less commonly, the silicification assemblage includes pyrite. Y, U, Be, V, and Mg positive correlations with Fe survived the subsurface silicification. Ag, As, Mo, Sb, REE, and Ba were leached from stage 1 zones during stage 2, presumably liberated during recrystallization of iron oxyhydroxide and were reprecipitated in narrow crosscutting zones within stage 2 silicification. The depositional mechanism is not well understood, but radiogenic isotope trends indicate that interaction between hydrothermal fluid and detrital silicates preferentially precipitated some of these metals. The hydrothermal transition from low-temperature (less than 100 degrees C) oxidized to higher temperature ( more than 150 degrees C), H2S-bearing volcanic-hosted massive sulfide (VHMS)-style fluids in some systems is evidenced by the addition of Cu, Pb, Zn, Tl, Mn, Se, and possibly Eu, mainly as trace elements in pyrite. The Sr and Nd isotope systematics of the jaspers can be explained for stage 1 by mixing of seawater, clastic, and hydrothermal end members, giving rise to complex isotopic populations. The stage 1 signatures are supplanted by relatively simple isotopic compositions with increasing stage 2 alteration intensity. This replacement is best expressed in plots of resistant detrital elements and metals such as As, Se, Zn, and Pb versus epsilon Nd and 87Sr/86Sri. The hydrothermal component has epsilon Nd(480 Ma) ~ -2, best explained by leaching of the underlying Trooper Creek Formation (epsilon Nd (480 Ma) = +3.8 to -7.3) rather than leaching of deeper Mount Windsor Formation rhyolitic volcanics (epsilon Nd (480 Ma) = -4.7 to -12.8). There is no support for a magmatic fluid, because no match exists with the known Trooper Creek Formation epsilon Nd(480 Ma) magmatic populations (epsilon Nd (480 Ma) = -4.1 to -7.3 and +3.8 to -0.9). The radiogenic isotopes support a shallow convecting model with jasper deposition from rockbuffered seawater. The evolution of fluids from cooler, oxidized to hotter, reduced conditions, either records heating induced by arrival of a subsurface thermal plume or the propagation of extensional faults deeper into a layered convective system.</p></div><table style="margin-bottom: 1em" border="0" cellpadding="3" class="not_ep_block"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">The definitive version is available online at http://econgeol.geoscienceworld.org/</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">exhalites, iron-silica chemical sediment, microbial, hydrothermal,volcanogenic massive sulfide mineralisation, Cambrian, inorganic geochemistry, radiogenic isotopes, chlorite-carbonate alteration, mineral exploration, Mount Windsor Volcanics, Queensland </td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260300.html">260000 Earth Sciences > 260300 Geochemistry</a><br /><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences > 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">Collections:</th><td valign="top" class="ep_row">UNSPECIFIED</td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1844</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">04 Sep 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">23 Jan 2008 15:50</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1844;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=1844">item control page</a></p> </td></tr></table> </div> <!-- InstanceEndEditable --></td> </tr> <tr> <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" --> <table width="795" border="0" align="left" cellpadding="0" class="footer"> <tr valign="top"> <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td> </tr> <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr> <tr valign="top"> <td width="68%" class="footer">Authorised by the University Librarian<br /> © University of Tasmania ABN 30 764 374 782<br /> <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td> <td width="32%"><div align="right"> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br /> </a></p> </div></td> </tr> <tr valign="top"> <td><p> </p></td> <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td> </tr> </table> <!-- #EndLibraryItem --> <div align="center"></div></td> </tr> </table> </body> </html>