<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head> <title>UTas ePrints - Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia</title> <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script> <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style> <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style> <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="Top" href="http://eprints.utas.edu.au/" /> <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" /> <meta content="Agnew, M.W." name="eprints.creators_name" /> <meta content="Large, R.R." name="eprints.creators_name" /> <meta content="Bull, S.W." name="eprints.creators_name" /> <meta name="eprints.creators_id" /> <meta content="Ross.Large@utas.edu.au" name="eprints.creators_id" /> <meta content="S.Bull@utas.edu.au" name="eprints.creators_id" /> <meta content="article" name="eprints.type" /> <meta content="2007-09-12" name="eprints.datestamp" /> <meta content="2008-01-23T04:58:39Z" name="eprints.lastmod" /> <meta content="show" name="eprints.metadata_visibility" /> <meta content="Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia" name="eprints.title" /> <meta content="pub" name="eprints.ispublished" /> <meta content="260100" name="eprints.subjects" /> <meta content="restricted" name="eprints.full_text_status" /> <meta content="Volcanic-hosted massive sulphide, Carbonate-hosted replacement, Sulphide textures, Limestone, Lachlan Fold Belt, Hill End Trough, Australia" name="eprints.keywords" /> <meta content="Abstract The Lewis Ponds Zn-Pb-Cu-Ag-Au deposit, located in the eastern Lachlan Fold Belt, central western New South Wales, exhibits the characteristics of both volcanic-hosted massive sulphide and carbonate- hosted replacement deposits. Two stratabound massive to disseminated sulphide zones, Main and Toms, occur in a tightly folded Upper Silurian sequence of marine felsic volcanic and sedimentary rocks. They have a combined indicated resource of 5.7 Mt grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t Ag and 1.9 g/t Au. Main Zone is hosted by a thick unit of poorly sorted mixed provenance breccia, limestone-clast breccia and quartz crystal-rich sandstone, whereas Toms Zone occurs in the overlying siltstone. Pretectonic carbonate-chalcopyrite-pyrite and quartz-pyrite stringer veins occur in the footwall porphyritic dacite, south of Toms Zone. Strongly sheared dolomite-chalcopyrite-pyrrhotite veins directly underlie the Toms massive sulphide lens. The mineralized zones consist predominantly of pyrite, sphalerite and galena. Paragenetically early framboidal, dendritic and botryoidal pyrite aggregates and tabular pyrrhotite pseudomorphs of sulphate occur throughout the breccia and sandstone beds that host Main Zone, but are rarely preserved in the annealed massive sulphide in Toms Zone. Main and Toms zones are associated with a semi-conformable hydrothermal alteration envelope, characterized by texturally destructive chlorite-, dolomite- and quartz-rich assemblages. Dolomite, chlorite, quartz, calcite and sulphides have selectively replaced breccia and sandstone beds in the Main Zone host sequence, whereas the underlying porphyritic dacite is weakly sericite altered. Vuggy and botryoidal textures resulted from partial dissolution of the dolomite-altered sedimentary rocks and unimpeded growth of base metal sulphides, carbonate and quartz into open cavities. The intense chlorite-rich alteration assemblage, underlying Toms Zone, grades outward into a weak pervasive sericite-quartz assemblage with distance from the massive sulphide lens. Limestone clasts and hydrothermal dolomite at Lewis Ponds are enriched in light carbon and oxygen isotopes. The dolomite yielded delta 13 CVPDB values of -11 to +1 per mil and delta 18O VSMOW values of 6 to 16per mil. Liquid-vapour fluid inclusions in the dolomite have low salinities (1.4-7.7 equiv. wt% NaCl) and homogenization temperatures (166-232 degrees C for 1,000 m water depth). Dolomitization probably involved fluid mixing or fluid-rock interactions between evolved heated seawater and the limestone-bearing facies, prior to and during mineralization. delta 34 SVCDT values range from 2.0 per mil to 5.0 per mil in the massive sulphide and 3.9 per mil to 7.4 per mil in the footwall carbonate-chalcopyrite-pyrite stringer veins, indicating that the hydrothermal fluid may have contained mamgatic sulphur and a component of partially reduced seawater. The sulphide mineral assemblages at Lewis Ponds are consistent with moderate to strongly reduced conditions during diagenesis and mineralization. Low temperature dolomitization of limestonebearing facies in the Main Zone host sequence created secondary porosity and provided a reactive host for fluid-rock interactions. Main Zone formed by lateral fluid flow and sub-seafloor replacement of the poorly sorted breccia and sandstone beds. Base metal sulphide deposition probably resulted from dissolution of dolomite, fluid mixing and increased fluid pH. Pyrite, sphalerite and galena precipitated from a relatively low temperature, 150-250C hydrothermal fluid. In contrast, Toms Zone was emplaced into finegrained sediment at or near the seafloor, above a zone of focused up-flowing hydrothermal fluids. Copperrich assemblages were deposited in the Toms Zone footwall and massive sulphide lenses in Main and Toms zones as the hydrothermal system intensified.During the D1 deformation, fracture-controlled fluids within the Lewis Ponds fault zone and adjacent footwall volcanic succession remobilized sulphides into syntectonic quartz veins. Lewis Ponds is a rare example of a synvolcanic sub-seafloor hydrothermal system developed within fossiliferous limestone-bearing facies. The close spatial association between limestone, hydrothermal dolomite, massive sulphide and dacite provides a basis for new exploration targets elsewhere in New South Wales." name="eprints.abstract" /> <meta content="2005-03" name="eprints.date" /> <meta content="published" name="eprints.date_type" /> <meta content="Mineralium Deposita" name="eprints.publication" /> <meta content="39" name="eprints.volume" /> <meta content="8" name="eprints.number" /> <meta content="822-844" name="eprints.pagerange" /> <meta content="10.1007/s00126-004-0456-6" name="eprints.id_number" /> <meta content="UNSPECIFIED" name="eprints.thesis_type" /> <meta content="TRUE" name="eprints.refereed" /> <meta content="0026-4598" name="eprints.issn" /> <meta content="http://dx.doi.org/10.1007/s00126-004-0456-6" name="eprints.official_url" /> <meta content="Agnew MW (2003) Geology and genesis of the Lewis Ponds carbonate and volcanic-hosted massive sulfide deposits, New South Wales Australia. PhD Thesis, University of Tasmania Agnew MW, Bull SW, Large RR (2004) Facies architecture of the Lewis Ponds carbonate and volcanic-hosted massive sulphide deposits, central western New South Wales. Aust J Earth Sci 51:349-368 Allen RL (1992) Reconstruction of the tectonic, volcanic, and sedimentary setting of strongly deformed Zn-Cu massive sulphide deposits at Benambra, Victoria. Econ Geol 87:825-854 Allen RL, Lundstrom I, Ripa M, Christofferson H, Stephens MB, Halenius U, Widenfalk L (1996) Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Econ Geol 91:979-1008 Ayres DE, Burns MS, Smith JW (1979) Sulphur-isotope study of the massive sulphide orebody at Woodlawn, New South Wales. J Geol Soc Aust 26:197-201 Belkin HE, Cavarretta G, De Vivo B, Tecce F (1988) Hydrothermal phlogopite and anhydrite from the SH2 well, Sabatini volcanic district, Latium, Italy; fluid inclusions and mineral chemistry. Amer Mineral 73:775-797 Bodon SB, Valenta RK (1995) Primary and tectonic features of the Currawong Zn-Cu-Pb(-Au) massive sulfide deposit, Benambra, Victoria: implications for ore genesis. Econ Geol 90:1694-1721 Botros NS (2003) On the relationship between auriferous talc deposits hosted in volcanic rocks and massive sulphide deposits in Egypt. Ore Geol Rev 23:223-257 Callaghan T (2001) Geology and host-rock alteration of the Henty and Mount Julia gold deposits, western Tasmania. Econ Geol 96:1073-1088 de Carlo EH, Lackschewitz KK, Carmody R (2002) Data report: trace element and isotopic composition of interstitial water and sediments from the Woodlark Rise, ODP Leg 180. In: Huchon P, Taylor B, Klaus A (eds) Proceedings of the ocean drilling program, scientific results, Leg 180, vol 180 Carne JE (1899) The copper-mining industry and the distribution of copper ores in New South Wales, vol 6. William Applegate Gullick, Government Printer, Sydney Chisholm JM (1976) Geochemical zoning in a volcanogenic Cu-Pb-Zn-Ag sulphide deposit at Mt Bulga, N.S.W., Australia. PhD Thesis, University of New South Wales Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199-260 Colquhoun GP, Meakin NS, Morgan EJ, Raymond OL, Scott MM, Watkins JJ, Barron LM, Cameron RG, Henderson GAM, Jagodzinski EA, Krynen JP, Pogson DJ, Warren AYE, Wyborn D, Yoo EK (1997) Dubbo 1:250 000 geological sheet SI55-4, preliminary second edition. Geological Survey of New South Wales. Sydney and Australian Geological Survey Organisation, Canberra Corbett KD (2001) New mapping and interpretations of the Mount Lyell mining district, Tasmania: a large hybrid Cu-Au system with an exhalative top. Econ Geol 96:1089-1122 Costa UR, Barnett RL, Kerrich R (1983) The Mattagami Lake Mine Archean Zn-Cu sulfide deposit, Quebec; hydrothermal coprecipitation of talc and sulfides in a sea-floor brine pool; evidence from geochemistry, d18O/d16O, and mineral chemistry. Econ Geol 78:1144-1203 Davis LW (1990) Silver-lead-zinc-copper mineralisation in the Captains Flat-Goulburn synclinorial zone and the Hill End synclinorial zone. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol 2. The Australasian Institute of Mining and Metallurgy, Melbourne, pp 1375-1384 Davis EE, Goodfellow WD, Bornhold BD, Adshead J, Blaise B, Villinger H, Le CGM (1987) Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge. Earth Planet Sci Lett 82:49-61 Downes PM, Seccombe PK (2004) Sulfur isotope distribution in Late Silurian volcanic-hosted massive sulfide deposits, eastern Lachlan Fold Belt, NSW. Aust J Earth Sci 51:123-139 Doyle MG, Allen RL (2003) Subsea-floor replacement in volcanichosted massive sulfide deposits. Ore Geol Rev23:183-222 Duckworth RC, Fallick AE, Rickard D (1994) Mineralogy and sulfur isotopic composition of the Middle Valley massive sulfide deposit, northern Juan De Fuca Ridge. In: Mottl MJ, Davis EE, Fisher AT, Slack JF (eds) Proceedings of the ocean drilling program, scientific results, vol 139, pp 373-385 Eldridge CS, Barton PB Jr, Ohmoto H (1983) Mineral textures and their bearing on formation of the Kuroko orebodies. Econ Geol Monogr 5:241-281 Foster DA, Gray DR (2000) Evolution and structure of the Lachlan Fold Belt (orogen) of eastern Australia. Annu Rev Earth Planet Sci 28:47-80 Glen RA (1992) Thrust, extensional and strike-slip tectonics in an evolving Palaeozoic orogen-a structural synthesis of the Lachlan Orogen of southeastern Australia. Tectonophysics 214:341-380 Glen RA, Watkins JJ (1994) The Orange 1:100 000 sheet: a preliminary account of stratigraphy, structure and tectonics, and implications for mineralisation. Geological Survey of New South Wales, Quarterly Notes 95:1-17 Glen RA, Lennox PG, Foster DA (1999) 40Ar39Ar dating of deformations west of the Hill End Trough, Lachlan Orogen, New South Wales. Geological Survey of New South Wales Quarterly Notes 110:13-22 Goodfellow WD, Franklin JM (1993) Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge. Econ Geol 88:2033-2064 Grandia F, Cardellach E, Canals A, Banks DA (2003) Geochemistry of the fluids related to epigenetic carbon-hosted Zn-Pb deposits in the Maestrat Basin, eastern Spain; fluid inclusion and isotope (Cl, C, O, S, Sr) evidence. Econ Geol 98:933-954 Gregg JM, Sibley DF (1984) Epigenetic dolomitization and the origin of xenotopic dolomite texture. J Sediment Petrol 54:908-931 Halbach P, Pracejus B, Maerten A (1993) Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Econ Geol 88:2206-2221 Hannington MD, Bleeker W, Kjarsgaard I (1999) Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Creek deposit; part I, North, Central and South orebodies. Econ Geol Monogr 10:163-224 Herrmann W, Hill AP (2001) The origin of chlorite-tremolite-carbonate rocks associated with the Thalanga Volcanic-hosted massive sulfide deposit, North Queensland, Australia. Econ Geol 96:1149-1173 Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor; a review. Ore Geol Rev 10:95-115 Hitzman MW, Beaty DW (1997) The Irish Zn-Pb-(Ba) orefield. Special publication-Society of Economic Geologists 4:112-143 Hitzman MW, Redmond PB, Beaty DW (2002) The carbonatehosted Lisheen Zn-Pb-Ag deposit, County Tipperary, Ireland. Econ Geol 97:1627-1655 Hou Z, Zaw K, Qu X, Ye Q, Yu J, Xu M, Fu D, Yin X (2001) Origin of the Gacun volcanic-hosted massive sulfide deposit in Sichuan, China; fluid inclusion and oxygen isotope evidence. Econ Geol 96:1491-1512 Huston DL, Large RR (1989) A chemical model for the concentration of gold in volcanogenic massive sulphide deposits. Ore Geol Rev 4:171-200 Huston DL, Barrie CT, Hannington MD (1999) Stable isotopes and their significance for understanding the genesis of volcanichosted massive sulfide deposits; a review. Rev Econ Geol 8:157-179 Jago JB, Reid KO, Quilty PG, Green GR, Daily B (1972) Fossiliferous Cambrian limestone from within the Mt Read Volcanics, Mt Lyell mine area, Tasmania. J Geol Soc Aust 19:379-382 Kajiwara Y (1972) Sulfur isotope study of the Kuroko-ores of the Shakanai No. 1 deposits, Akita Prefecture, Japan. Geochem J 4:157-181 Kontak DJ, Hebert R (1998) Geology of the Stirling Zn-Pb-Cu-Ag-Au VMS deposit, Southeast Cape Breton, Nova Scotia; reinterpretation of the quartz-talc-carbonate (QTC) rock with implications for mineral exploration. In: Program with Abstracts-Geological Association of Canada; Mineralogical Association of Canada; Canadian Geophysical Union, Joint Annual Meeting, vol 23. Geological Association of Canada, Waterloo, pp 94-95 Large RR (1977) Chemical evolution and zonation of massive sulfide deposits in volcanic terrains. Econ Geol 72:549-572 Large RR (1992) Australian volcanic-hosted massive sulphide deposits: features, styles, and genetic models. Econ Geol 87:471-510 Large RR, Both RA (1980) The volcanogenic sulfide ores at Mount Chalmers, eastern Queensland. Econ Geol 75:992-1009 Large RR, Allen RL, Blake MD, Herrmann W (2001a) Hydrothermal alteration and volatile element halos for the Rosebery K lens volcanic-hosted massive sulfide deposit, western Tasmania. Econ Geol 96:1055-1072 Large RR, Bull SW, Winefield PR (2001b) Carbon and oxygen isotope halo in carbonates related to the McArthur River (HYC) Zn-Pb-Ag deposit, north Australia: implications for sedimentation, ore genesis, and mineral exploration. Econ Geol 96:1567-1593 McKay WJ, Hazeldene RK (1987) Woodlawn Zn-Pb-Cu sulfide deposit, New South Wales, Australia: an interpretation of ore formation from field observations and metal zoning. Econ Geol 82:141-164 McLeod RL, Stanton RL (1984) Phyllosilicates and associated minerals in some Paleozoic stratiform sulfide deposits of southeastern Australia. Econ Geol 79:1-22 Meakin S, Spackman J, Scott MM, Watkins JJ, Warren AYE, Moffit RS, Krynen JP (1997) Orange 1:100 000 geological map 8731, 1st edn. Geological Survey of New South Wales, Sydney and Australian Geological Survey Organisation, Canberra Misra KC, Gratz JF, Lu C (1997) Carbonate-hosted Mississippi Valley-type mineralization in the Elmwood-Gordonsville deposits, central Tennessee zinc district; a synthesis. Special Publication Society of Economic Geologists 4:58-73 Moore JG, Clague DA (1992) Volcano growth and evolution of the Island of Hawaii. Geol Soc Am Bull 104:1471-1484 Mullin JW (1993) Crystallization. Butterworth and Heinemann, Oxford Northrop DA, Clayton RN (1966) Oxygen-isotope fractionations in systems containing dolomite. J Geol 74:174-196 Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 517-612 Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 509-567 Orth K (2002) Setting of the Palaeoproterozoic Koongie Park Formation and carbonate-associated base metal mineralisation, at Koongie Park, northwestern Australia. PhD Thesis, University of Tasmania Paradis S, Jonasson IR, Le Cheminant GM, Watkinson DH (1988) Two zinc-rich chimneys from the Plume Site, southern Juan de Fuca Ridge. Can Mineral 26:637-654 Paulick H, Herrmann W, Gemmell JB (2001) Alteration of felsic volcanics hosting the Thalanga massive sulfide deposit (Northern Queensland, Australia) and geochemical proximity indicators to ore. Econ Geol 96:1175-1200 Peace WM, Wallace MW, Holdstock MP, Ashton JH (2003) Ore textures within the U lens of the Navan Zn-Pb deposit, Ireland. Mineral Deposit 38:568-584 Pittman EF (1901) The mineral resources of New South Wales. Geological Survey of New South Wales, Sydney Pogson DJ, Watkins JJ (1998) Bathurst 1:250 000 Geological Sheet, Explanatory Notes. Geological Survey of New South Wales, Sydney Radke BM, Mathis RL (1980) On the formation and occurrence of saddle dolomite. J Sediment Petrol 50:1149-1168 Randell RN, Anderson GM (1997) Geology of the Polaris Zn-Pb deposit and surrounding area, Canadian Arctic Archipelago. Special Publication-Soc Econ Geol 4:307-319 Raymond OL, Pogson DJ (1998) Bathurst 1:250 000 geological map SI55-8, 2nd edn. Geological Survey of New South Wales, Sydney and Australian Geological Survey Organisation, Canberra Rice JM (1977) Progressive metamorphism of impure dolomitic limestone in the Marysville aureole, Montana.AmJ Sci 277:1-24 Rimstidt JD (1997) Gangue mineral transport and deposition. In: Barnes HL (ed) Geochemistry of hydrothermal deposits. Wiley, New York, pp 487-515 Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, London de Ronde CEJ (1995) Fluid chemistry and isotopic characteristics of seafloor hydrothermal systems and associated VMS deposits: potential for magmatic contributions. In: Thompson JFH (ed) Magmas, fluids and ore deposits, Mineralogical Association of Canada Short Course Series 23:479-509 Sato T (1973) A chloride complex model for Kuroko mineralization. Geochem J 7:245-270 Saunders JA (1990) Colloidal transport of gold and silica in epithermal precious-metal systems. Geology 18:757-760 Schardt C, Cooke DR, Gemmell JB, Large RR (2001) Geochemical modeling of the zoned footwall alteration pipe, Hellyer volcanic-hosted massive sulfide deposit, Tasmania, Australia. Econ Geol 96:1037-1054 Scheibner E (1998) Geology of New South Wales-synthesis vol 2, geological evolution, vol 2. Geological Survey of New South Wales, Sydney Scheibner E, Veevers JJ (2000) Tasman Fold Belt System. In: Veevers JJ (ed) Billion-year earth history of Australia and neighbours in Gondwanaland. GEMOC Press, Department of Earth and Planetary Sciences, Macquarie University, Sydney, pp 154-234 Shanks WC III (2001) Stable isotopes in seafloor hydrothermal systems; vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev Mineral Geochem 43:469-525 Slaughter J, Kerrick DM, Wall VJ (1975) Experimental and thermodynamic study of equilibria in the system CaO-MgO-SiO (sub 2) -H (sub 2) O-CO (sub 2). Am J Sci 275:143-162 Solomon M, Gaspar OC (2001) Textures of the Hellyer volcanichosted massive sulfide deposit, Tasmania -the aging of a sulfide sediment on the sea floor. Econ Geol 96:1513-1534 Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph Stanton RL (1955a) The genetic relationship between limestone, volcanic rocks, and certain ore deposits. Aust J Sci 17:173-175 Stanton RL (1955b) Lower Palaeozoic mineralization near Bathurst, New South Wales. Econ Geol 50:681-714 Stevens BPJ (1974) Hill End synclinorial zone. In: Markham NL, Basden H (eds) The mineral deposits of New South Wales. Geological Survey of New South Wales, Department of Mines, Sydney, pp 276-293 Swart PK, Burns SJ, Leader JJ (1991) Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem Geol 86:89-96 Urabe T, Scott SD, Hattori K (1983) A comparison of footwallrock alteration and geothermal systems beneath some Japanese and Canadian volcanogenic massive sulfide deposits. Econ Geol Monogr 5:345-364 Valliant RI, Meares RMD (1998) Lewis Ponds gold-silver-copperlead-zinc deposits. In: Berkman DA, Mackenzie DH (eds) Geology of Australian and Papua New Guinean deposits. The Australasian Institute of Mining and Metallurgy, Melbourne, pp 635-640 Veizer J, Hoefs J (1976) The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387-1395. Walshe JL, Solomon M (1981) An investigation into the environment of formation of the volcanic-hosted Mt. Lyell copper deposits using geology, mineralogy, stable isotopes, and a sixcomponent chlorite solid solution model. Econ Geol 76:246-284 Wilkin RT, Barnes HL (1997) Formation processes of framboidal pyrite. Geochim Cosmochim Acta 61:323-339 Zierenberg RA, Koski RA, Morton JL, Bouse RM (1993) Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge. Econ Geol 88:2065-2094" name="eprints.referencetext" /> <meta content="Agnew, M.W. and Large, R.R. and Bull, S.W. (2005) Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia. Mineralium Deposita, 39 (8). pp. 822-844. ISSN 0026-4598" name="eprints.citation" /> <meta content="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf" name="eprints.document_url" /> <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /> <meta content="Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia" name="DC.title" /> <meta content="Agnew, M.W." name="DC.creator" /> <meta content="Large, R.R." name="DC.creator" /> <meta content="Bull, S.W." name="DC.creator" /> <meta content="260100 Geology" name="DC.subject" /> <meta content="Abstract The Lewis Ponds Zn-Pb-Cu-Ag-Au deposit, located in the eastern Lachlan Fold Belt, central western New South Wales, exhibits the characteristics of both volcanic-hosted massive sulphide and carbonate- hosted replacement deposits. Two stratabound massive to disseminated sulphide zones, Main and Toms, occur in a tightly folded Upper Silurian sequence of marine felsic volcanic and sedimentary rocks. They have a combined indicated resource of 5.7 Mt grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t Ag and 1.9 g/t Au. Main Zone is hosted by a thick unit of poorly sorted mixed provenance breccia, limestone-clast breccia and quartz crystal-rich sandstone, whereas Toms Zone occurs in the overlying siltstone. Pretectonic carbonate-chalcopyrite-pyrite and quartz-pyrite stringer veins occur in the footwall porphyritic dacite, south of Toms Zone. Strongly sheared dolomite-chalcopyrite-pyrrhotite veins directly underlie the Toms massive sulphide lens. The mineralized zones consist predominantly of pyrite, sphalerite and galena. Paragenetically early framboidal, dendritic and botryoidal pyrite aggregates and tabular pyrrhotite pseudomorphs of sulphate occur throughout the breccia and sandstone beds that host Main Zone, but are rarely preserved in the annealed massive sulphide in Toms Zone. Main and Toms zones are associated with a semi-conformable hydrothermal alteration envelope, characterized by texturally destructive chlorite-, dolomite- and quartz-rich assemblages. Dolomite, chlorite, quartz, calcite and sulphides have selectively replaced breccia and sandstone beds in the Main Zone host sequence, whereas the underlying porphyritic dacite is weakly sericite altered. Vuggy and botryoidal textures resulted from partial dissolution of the dolomite-altered sedimentary rocks and unimpeded growth of base metal sulphides, carbonate and quartz into open cavities. The intense chlorite-rich alteration assemblage, underlying Toms Zone, grades outward into a weak pervasive sericite-quartz assemblage with distance from the massive sulphide lens. Limestone clasts and hydrothermal dolomite at Lewis Ponds are enriched in light carbon and oxygen isotopes. The dolomite yielded delta 13 CVPDB values of -11 to +1 per mil and delta 18O VSMOW values of 6 to 16per mil. Liquid-vapour fluid inclusions in the dolomite have low salinities (1.4-7.7 equiv. wt% NaCl) and homogenization temperatures (166-232 degrees C for 1,000 m water depth). Dolomitization probably involved fluid mixing or fluid-rock interactions between evolved heated seawater and the limestone-bearing facies, prior to and during mineralization. delta 34 SVCDT values range from 2.0 per mil to 5.0 per mil in the massive sulphide and 3.9 per mil to 7.4 per mil in the footwall carbonate-chalcopyrite-pyrite stringer veins, indicating that the hydrothermal fluid may have contained mamgatic sulphur and a component of partially reduced seawater. The sulphide mineral assemblages at Lewis Ponds are consistent with moderate to strongly reduced conditions during diagenesis and mineralization. Low temperature dolomitization of limestonebearing facies in the Main Zone host sequence created secondary porosity and provided a reactive host for fluid-rock interactions. Main Zone formed by lateral fluid flow and sub-seafloor replacement of the poorly sorted breccia and sandstone beds. Base metal sulphide deposition probably resulted from dissolution of dolomite, fluid mixing and increased fluid pH. Pyrite, sphalerite and galena precipitated from a relatively low temperature, 150-250C hydrothermal fluid. In contrast, Toms Zone was emplaced into finegrained sediment at or near the seafloor, above a zone of focused up-flowing hydrothermal fluids. Copperrich assemblages were deposited in the Toms Zone footwall and massive sulphide lenses in Main and Toms zones as the hydrothermal system intensified.During the D1 deformation, fracture-controlled fluids within the Lewis Ponds fault zone and adjacent footwall volcanic succession remobilized sulphides into syntectonic quartz veins. Lewis Ponds is a rare example of a synvolcanic sub-seafloor hydrothermal system developed within fossiliferous limestone-bearing facies. The close spatial association between limestone, hydrothermal dolomite, massive sulphide and dacite provides a basis for new exploration targets elsewhere in New South Wales." name="DC.description" /> <meta content="2005-03" name="DC.date" /> <meta content="Article" name="DC.type" /> <meta content="PeerReviewed" name="DC.type" /> <meta content="application/pdf" name="DC.format" /> <meta content="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf" name="DC.identifier" /> <meta content="http://dx.doi.org/10.1007/s00126-004-0456-6" name="DC.relation" /> <meta content="Agnew, M.W. and Large, R.R. and Bull, S.W. (2005) Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia. Mineralium Deposita, 39 (8). pp. 822-844. ISSN 0026-4598" name="DC.identifier" /> <meta content="http://eprints.utas.edu.au/1899/" name="DC.relation" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/BibTeX/epprod-eprint-1899.bib" title="BibTeX" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/ContextObject/epprod-eprint-1899.xml" title="OpenURL ContextObject" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/ContextObject::Dissertation/epprod-eprint-1899.xml" title="OpenURL Dissertation" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/ContextObject::Journal/epprod-eprint-1899.xml" title="OpenURL Journal" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/DC/epprod-eprint-1899.txt" title="Dublin Core" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/DIDL/epprod-eprint-1899.xml" title="DIDL" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/EndNote/epprod-eprint-1899.enw" title="EndNote" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/HTML/epprod-eprint-1899.html" title="HTML Citation" type="text/html; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/METS/epprod-eprint-1899.xml" title="METS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/MODS/epprod-eprint-1899.xml" title="MODS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/RIS/epprod-eprint-1899.ris" title="Reference Manager" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/Refer/epprod-eprint-1899.refer" title="Refer" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/Simple/epprod-eprint-1899text" title="Simple Metadata" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/Text/epprod-eprint-1899.txt" title="ASCII Citation" type="text/plain; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1899/XML/epprod-eprint-1899.xml" title="EP3 XML" type="text/xml" /> </head> <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')"> <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div> <table width="795" border="0" cellspacing="0" cellpadding="0"> <tr> <td><script language="JavaScript1.2">mmLoadMenus();</script> <table border="0" cellpadding="0" cellspacing="0" width="795"> <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" --> <tr> <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td> </tr> <tr> <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td> <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td> <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td> <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td> </tr> <tr> <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td> <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td> <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td> <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td> <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td> <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td> <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td> <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td> <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td> <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td> </tr> <tr> <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td> <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td> </tr> </table></td> </tr> <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr> <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td> <td align="right" style="white-space: nowrap"> <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline"> <input class="ep_tm_searchbarbox" size="20" type="text" name="q" /> <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" /> <input type="hidden" name="_order" value="bytitle" /> <input type="hidden" name="basic_srchtype" value="ALL" /> <input type="hidden" name="_satisfyall" value="ALL" /> </form> </td> </tr></table></td></tr> <tr> <td class="toplinks"><!-- InstanceBeginEditable name="content" --> <div align="center"> <table width="720" class="ep_tm_main"><tr><td align="left"> <h1 class="ep_tm_pagetitle">Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia</h1> <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Agnew, M.W.</span> and <span class="person_name">Large, R.R.</span> and <span class="person_name">Bull, S.W.</span> (2005) <xhtml:em>Lewis Ponds, a hybrid carbonate and volcanic-hosted polymetallic massive sulphide deposit, New South Wales, Australia.</xhtml:em> Mineralium Deposita, 39 (8). pp. 822-844. ISSN 0026-4598</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" border="0" class="ep_doc_icon" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/1899/1/Agnew%2C_Large%2C_Bull_2005_MINERAL_DEPOS.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />2061Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input value="2394" name="docid" accept-charset="utf-8" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1007/s00126-004-0456-6">http://dx.doi.org/10.1007/s00126-004-0456-6</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Abstract The Lewis Ponds Zn-Pb-Cu-Ag-Au deposit, located in the eastern Lachlan Fold Belt, central western New South Wales, exhibits the characteristics of both volcanic-hosted massive sulphide and carbonate- hosted replacement deposits. Two stratabound massive to disseminated sulphide zones, Main and Toms, occur in a tightly folded Upper Silurian sequence of marine felsic volcanic and sedimentary rocks. They have a combined indicated resource of 5.7 Mt grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t Ag and 1.9 g/t Au. Main Zone is hosted by a thick unit of poorly sorted mixed provenance breccia, limestone-clast breccia and quartz crystal-rich sandstone, whereas Toms Zone occurs in the overlying siltstone. Pretectonic carbonate-chalcopyrite-pyrite and quartz-pyrite stringer veins occur in the footwall porphyritic dacite, south of Toms Zone. Strongly sheared dolomite-chalcopyrite-pyrrhotite veins directly underlie the Toms massive sulphide lens. The mineralized zones consist predominantly of pyrite, sphalerite and galena. Paragenetically early framboidal, dendritic and botryoidal pyrite aggregates and tabular pyrrhotite pseudomorphs of sulphate occur throughout the breccia and sandstone beds that host Main Zone, but are rarely preserved in the annealed massive sulphide in Toms Zone. Main and Toms zones are associated with a semi-conformable hydrothermal alteration envelope, characterized by texturally destructive chlorite-, dolomite- and quartz-rich assemblages. Dolomite, chlorite, quartz, calcite and sulphides have selectively replaced breccia and sandstone beds in the Main Zone host sequence, whereas the underlying porphyritic dacite is weakly sericite altered. Vuggy and botryoidal textures resulted from partial dissolution of the dolomite-altered sedimentary rocks and unimpeded growth of base metal sulphides, carbonate and quartz into open cavities. The intense chlorite-rich alteration assemblage, underlying Toms Zone, grades outward into a weak pervasive sericite-quartz assemblage with distance from the massive sulphide lens. Limestone clasts and hydrothermal dolomite at Lewis Ponds are enriched in light carbon and oxygen isotopes. The dolomite yielded delta 13 CVPDB values of -11 to +1 per mil and delta 18O VSMOW values of 6 to 16per mil. Liquid-vapour fluid inclusions in the dolomite have low salinities (1.4-7.7 equiv. wt% NaCl) and homogenization temperatures (166-232 degrees C for 1,000 m water depth). Dolomitization probably involved fluid mixing or fluid-rock interactions between evolved heated seawater and the limestone-bearing facies, prior to and during mineralization. delta 34 SVCDT values range from 2.0 per mil to 5.0 per mil in the massive sulphide and 3.9 per mil to 7.4 per mil in the footwall carbonate-chalcopyrite-pyrite stringer veins, indicating that the hydrothermal fluid may have contained mamgatic sulphur and a component of partially reduced seawater. The sulphide mineral assemblages at Lewis Ponds are consistent with moderate to strongly reduced conditions during diagenesis and mineralization. Low temperature dolomitization of limestonebearing facies in the Main Zone host sequence created secondary porosity and provided a reactive host for fluid-rock interactions. Main Zone formed by lateral fluid flow and sub-seafloor replacement of the poorly sorted breccia and sandstone beds. Base metal sulphide deposition probably resulted from dissolution of dolomite, fluid mixing and increased fluid pH. Pyrite, sphalerite and galena precipitated from a relatively low temperature, 150-250C hydrothermal fluid. In contrast, Toms Zone was emplaced into finegrained sediment at or near the seafloor, above a zone of focused up-flowing hydrothermal fluids. Copperrich assemblages were deposited in the Toms Zone footwall and massive sulphide lenses in Main and Toms zones as the hydrothermal system intensified.During the D1 deformation, fracture-controlled fluids within the Lewis Ponds fault zone and adjacent footwall volcanic succession remobilized sulphides into syntectonic quartz veins. Lewis Ponds is a rare example of a synvolcanic sub-seafloor hydrothermal system developed within fossiliferous limestone-bearing facies. The close spatial association between limestone, hydrothermal dolomite, massive sulphide and dacite provides a basis for new exploration targets elsewhere in New South Wales.</p></div><table style="margin-bottom: 1em" border="0" cellpadding="3" class="not_ep_block"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Volcanic-hosted massive sulphide, Carbonate-hosted replacement, Sulphide textures, Limestone, Lachlan Fold Belt, Hill End Trough, Australia</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences > 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">Collections:</th><td valign="top" class="ep_row">UNSPECIFIED</td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1899</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">12 Sep 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">23 Jan 2008 15:58</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1899;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=1899">item control page</a></p> </td></tr></table> </div> <!-- InstanceEndEditable --></td> </tr> <tr> <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" --> <table width="795" border="0" align="left" cellpadding="0" class="footer"> <tr valign="top"> <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td> </tr> <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr> <tr valign="top"> <td width="68%" class="footer">Authorised by the University Librarian<br /> © University of Tasmania ABN 30 764 374 782<br /> <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td> <td width="32%"><div align="right"> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br /> </a></p> </div></td> </tr> <tr valign="top"> <td><p> </p></td> <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td> </tr> </table> <!-- #EndLibraryItem --> <div align="center"></div></td> </tr> </table> </body> </html>