- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
- <html>
- <head>
- <title>UTas ePrints - Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia</title>
- <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
- <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
- <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
- <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
- <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
- <link rel="Top" href="http://eprints.utas.edu.au/" />
- <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
- <meta content="Schardt, C." name="eprints.creators_name" />
- <meta content="Yang, J." name="eprints.creators_name" />
- <meta content="Large, R.R." name="eprints.creators_name" />
- <meta content="" name="eprints.creators_id" />
- <meta content="" name="eprints.creators_id" />
- <meta content="Ross.Large@utas.edu.au" name="eprints.creators_id" />
- <meta content="article" name="eprints.type" />
- <meta content="2007-10-04 05:58:49" name="eprints.datestamp" />
- <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
- <meta content="show" name="eprints.metadata_visibility" />
- <meta content="Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia" name="eprints.title" />
- <meta content="pub" name="eprints.ispublished" />
- <meta content="260100" name="eprints.subjects" />
- <meta content="restricted" name="eprints.full_text_status" />
- <meta content="VHMS, ore genesis, ore fluids, sea floor ore deposits, VMS, Cu-Pb-Zn" name="eprints.keywords" />
- <meta content="Exceptional exposure of the Archean Pilbara block in Western Australia reveals a cross section through an
- Archean massive sulfide-hosting volcanic succession with underlying subvolcanic intrusion in the Panorama
- district. A numerical model based on available detailed geologic information has been constructed to simulate
- heat and fluid flow in the Panorama district. The modeling provides insight into the evolution of the hydrothermal
- system and evaluates key geologic parameters and their influence on fluid-flow, hydrothermal circulation,
- and the genesis of massive sulfide orebodies. The model simulates important aspects of the Panorama
- massive sulfide district, such as temperature distribution, relative alteration zonation, and the size and distribution
- of orebodies. Predicted temperatures ranging from 150ºC at the top of the volcanic pile to ~400ºC at the
- andesite-diorite interface are comparable to temperature estimates based on previously published oxygen isotope
- mapping. Modeled fluid discharge temperatures are highest for the Sulphur Springs deposit (300º–400ºC)
- and lower for the Kangaroo Caves and other deposits (250º–350ºC). The most favorable conditions to reproduce
- the orebodies and their related alteration zonation occur at anisotropic rock permeabilities comparable
- to the upper oceanic crust (10–15–10–14 m2) and higher fault permeabilities (10–14–10–13 m2) with a specific fault
- arrangement similar to that mapped in the field. The 4.6 million metric tons (Mt) Sulphur Springs orebody is
- predicted to form in less than 5,000 yr, assuming a hydrothermal fluid with seawater salinity, 10 ppm base metal
- concentration, and a low deposition efficiency (≤10%); other deposits form above the faults under similar conditions.
- A large range of base metal concentrations in the fluids can account for the known orebodies, but high
- temperatures (≥250ºC) and high-flow velocities (>10–7 m/s) are necessary to produce the observed alteration
- patterns and distribution of ore deposits. Results indicate that the establishment of a significant hydrothermal
- system capable of forming economic massive sulfide deposits is favored in fresh volcanic rock packages that
- have not been affected by earlier compaction or alteration. Under these conditions, economic massive sulfide
- orebodies (>5 Mt of 10% Zn + Cu) may form in a few thousand years, although the overall lifespan of the hydrothermal
- system may be between 30,000 and ~200,000 yr, depending on the variations in rock and fault permeability
- with time.
- " name="eprints.abstract" />
- <meta content="2005-05" name="eprints.date" />
- <meta content="published" name="eprints.date_type" />
- <meta content="Economic Geology" name="eprints.publication" />
- <meta content="100" name="eprints.volume" />
- <meta content="3" name="eprints.number" />
- <meta content="547-566" name="eprints.pagerange" />
- <meta content="10.2113/100.3.547" name="eprints.id_number" />
- <meta content="TRUE" name="eprints.refereed" />
- <meta content="0361-0128" name="eprints.issn" />
- <meta content="http://dx.doi.org/10.2113/100.3.547" name="eprints.official_url" />
- <meta content="Appold, M.S., and Garven, G., 1999, The hydrology of ore formation in the
- Southwest Missouri district: Numerical models of topography-driven fluid
- flow during the Ouachita orogeny: ECONOMIC GEOLOGY, v. 94, p. 913–936.
- Barley, M.E., 1993, Volcanic, sedimentary and tectonostratigraphic environments
- of the ~3.46 Ga Warrawoona megasequence: A review: Precambrian
- Research, v. 60, p. 47–67.
- Barrie, C.T., Cathles, L.M., and Erendi, A., 1999a, Finite element heat and
- fluid-flow computer simulations of a deep ultramafic sill model for the
- Giant Kidd Creek volcanic-associated massive sulfide deposit, Abititi subprovince,
- Canada: ECONOMIC GEOLOGY MONOGRAPH 10, p. 529–540.
- Barrie, C.T., Cathles, L.M., Erendi, A., Schwaiger, H., and Murray, C.,
- 1999b, Heat and fluid flow in volcanic-associated massive sulfide-forming
- hydrothermal systems: Reviews in Economic Geology, v. 8, p. 201–219.
- Bear, J., 1972, Dynamics of fluids in porous media: New York, Elsevier, 764
- p.
- Becker, K., 1985, Large-scale electrical resistivity and bulk porosity of the
- oceanic crust, Deep Sea Drilling Project hole 504B, Costa Rica Rift: Deep
- Sea Drilling Project, v. 83, p. 419–427.
- ——1990, Measurement of the permeability of the upper oceanic crust at
- hole 395A, ODP Leg 109: Proceedings of the Ocean Drilling Project, Scientific
- Results, v. 106-109, p. 213–222.
- Brauhart, C.W., 1999, Regional alteration systems associated with Archean
- volcanogenic massive sulfide deposits at Panorama, Pilbara, Western Australia:
- Unpublished Ph.D. thesis, Nedlands, WA, University of Western
- Australia, 194 p.
- Brauhart, C.W., Groves, D., and Morant, P., 1998, Regional alteration systems
- associated with volcanogenic massive sulfide mineralization at
- Panorama, Pilbara, Western Australia: ECONOMIC GEOLOGY, v. 93, p.
- 292–303
- Brauhart, C.W., Huston, D.L., and Andrew, A.S., 2000, Oxygen isotope mapping
- in the Panorama VMS district, Pilbara craton, Western Australia: Applications
- to estimating temperatures of alteration and to exploration: Mineralium
- Deposita, v. 35, p. 727–740.
- Brauhart, C.W., Huston, D.L., Groves, D.I., Mikucki, E.J., and Stephen,
- J.G., 2001, Geochemical mass transfer patterns as indicators of the architecture
- of a complete volcanogenic massive-sulfide hydrothermal alteration
- system in the Panorama district, Pilbara, Western Australia: ECONOMIC GEOLOGY,
- v. 96, p. 1263–1278.
- Bruns, T.R., and Lavoie, D.L., 1994, Bulk permeability of young backarc
- basalt in the Lau basin from a downhole packer experiment: Proceedings
- of the Ocean Drilling Program, Scientific Results, v. 135, p. 805–816.
- Cann, J.R., Strens, M.R., and Rice, A., 1985, A simple magma-driven thermal
- balance model for the formation of volcanogenic massive sulphides:
- Earth and Planetary Science Letters, v. 76, p. 123–134.
- Carr, P.M., Cathles, L.M., Ioannou, S., and Barrie, C.T., 2002, The role of anhydrite
- deposition in sub-seafloor sill-driven hydrothermal systems [abs.]:
- Geological Society of America Abstracts, v. 34, p. 341.
- Carter, L.S., Kelley, S.A., Blackwell, D.D., and Naeser, N.D., 1998, Heat
- flow and thermal history of the Anadarko basin, Oklahoma: American Association
- of Petroleum Geologists Bulletin, v. 82, p. 291–316.
- Cas, R.A.F., 1992, Submarine volcanism: Eruption styles, products, and relevance
- to understanding the host-rock successions to VHMS deposits:
- ECONOMIC GEOLOGY, v. 87, p. 511–541.
- Cathles, L.M., 1981, Fluid flow and ore genesis of hydrothermal ore deposits:
- ECONOMIC GEOLOGY 75TH ANNIVERSARY VOLUME, p. 424–457.
- ——1983, An analysis of the hydrothermal system responsible for massive
- sulfide deposition in the Hokuroku basin of Japan: ECONOMIC GEOLOGY
- MONOGRAPH 5, p. 439–487.
- ——1993a, Oxygen isotope alteration in the Noranda mining district, Abitibi
- greenstone belt, Quebec: ECONOMIC GEOLOGY, v. 88, p. 1483–1511.
- ——1993b, A capless 350ºC flow zone model to explain megaplumes, salinity
- variations, and high-temperature veins in ridge axis hydrothermal systems:
- ECONOMIC GEOLOGY, v. 88, p. 1977–1988.
- Cathles, L.M., Erendi, A.H.J., and Barrie, T., 1997, How long can a hydrothermal
- system be sustained by a single intrusive event?: ECONOMIC
- GEOLOGY, v. 92, p. 766–771.
- Converse, D.R., Holland, H.D., and Edmond, J.M., 1984, Flow rates in the
- axial hot springs of the East Pacific Rise (21ºN): Implications for the heat
- budget and the formation of massive sulfide deposits: Earth and Planetary
- Science Letters, v. 69, p. 159–175.
- Davis, E.E., Chapman, D.S., and Forster, C.B., 1996, Observations concerning
- the vigour of hydrothermal circulation in young oceanic crust: Journal
- of Geophysical Research, v. 101, p. 2927–2942.
- Dickson, P., Schulz, A., and Woods, A., 1995, Preliminary modelling of hydrothermal
- circulation within mid-ocean ridge sulphide structures: Geological
- Society of London Special Publication, v. 87, p. 145–157.
- Feely, R.A., Lewison, M.A., Massoth, G.J., Baldo, G.R., Lavelle, R.H., Byrne,
- R.H., Von Damm, K.L., and Curl, Jr.H.C., 1987, Compositions and dissolution
- of black smoker particles from active vents on the Juan de Fuca
- Ridge: Journal of Geophysical Research, v. 92, p. 11,347–11,363.
- Fehn, U., and Cathles, L., 1979, Hydrothermal convection at slow-spreading
- mid-ocean ridges: Tectonophysics, v. 55, p. 239–260.
- Fisher, A.T., and Becker, K., 1991, Heat flow, hydrothermal circulation and
- basalt intrusions in the Guaymas basin, Gulf of California: Earth and Planetary
- Science Letters, v. 103, p. 84–99.
- ——1995, Correlation between seafloor heat flow and basement relief: Observational
- and numerical examples and implications for upper crustal permeability:
- Journal of Geophysical Research, v. 100, p. 12,641–12,657.
- Fisher, A.T., and Narasimhan, T.N., 1991, Numerical simulations of hydrothermal
- circulation resulting from basalt intrusions in a buried spreading
- center: Earth and Planetary Science Letters, v. 103, p. 100–115.
- Fisher, A.T., Becker, K., and Narasimhan, T.N., 1994, Off-axis hydrothermal
- circulation: Parametric tests of a refined model of processes at Deep Sea
- Drilling project/Ocean Drilling Program site 504: Journal of Geophysical
- Research, v. 99, p. 3097–3121.
- Fisher, A.T., Becker, K., and Davis, E.E., 1997, The permeability of young
- oceanic crust east of Juan de Fuca Ridge determined using borehole thermal
- measurements: Geophysical Research Letters, v. 24, p. 1311–1314.
- Galley, A.G., 1993, Characteristics of semi-conformable alteration zones associated
- with volcanogenic massive sulphide districts: Journal of Geochemical
- Exploration, v. 48, p. 175–200.
- Gamo, T., Okamura, K., Charlou, J.L., Urabe, T., Auzende, J.M., Ishibashi,
- J., Shitashima, K., Chiba, H., Binns, R.A., Gena, K., Henry, K., Matsubayashi,
- O., Moss, R., Nagaya, Y., Naka, J., and Ruellan, E., 1997, Acidic and
- sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua
- New Guinea: Geology, v. 25, p. 139–142.
- Ginster, U., Mottl, M.J., and Von Herzen, R.P., 1994, Heat flux from black
- smokers on the Endeavor and Cleft segments, Juan de Fuca Ridge: Journal
- of Geophysical Research, v. 99, p. 4937–4950.
- Hannington, M.D, Jonasson, I.R., Herzig, P.M., and Petersen, S., 1995, Physical
- and chemical processes of seafloor mineralization at mid-ocean ridges:
- Geophysical Monograph, v. 91, p. 115–157.
- Henley, R.W., and Ellis, A.J., 1983, Geothermal systems ancient and modern:
- A geochemical review: Earth Science Reviews, v. 19, p. 1–50.
- Hickman, A.H., 1983, Geology of the Pilbara block and its environs: Western
- Australia Geological Survey Bulletin, v. 127, 128 p.
- Hoy, L.D., 1993, Regional evolution of hydrothermal fluids in the Noranda
- district, Quebec: Evidence from δ18O values from volcanogenic massive
- sulfide deposits: ECONOMIC GEOLOGY, v. 88, p. 1526–1541.
- Holzbecher, E., 1998, Modeling density-driven flow in porous media: Berlin,
- Springer, 286 p.
- Huston, D.L., and Large, R.R., 1987, Genetic and exploration significance of
- the zinc ratio (100 Zn/(Zn + Pb)) in massive sulfide systems: ECONOMIC
- GEOLOGY, v. 82, p. 1521–1539.
- Huston, D.L., Taylor, B.E., Bleeker, W., and Watanabe, D.H., 1996, Productivity
- of volcanic-hosted massive sulfide districts: New constraints from the
- δ18O of quartz phenocrysts in cogenetic felsic rocks: Geology, v. 24, p.
- 459–462.
- Huston, D.L., Brauhart, C.W., Wellman, and Andrew, A.S., 1998, Gammaray
- spectrometric and oxygen-isotope mapping of regional alteration halos
- in massive sulphide districts: An example from Panorama, central Pilbara
- craton: Australian Geological Survey Organisation Research Newsletter 29,
- p. 14–16.
- Kranz, R.L., Frankel, A.D., Engelder, T., and Scholz, C.H., 1979, The permeability
- of whole and jointed Barre granite: International Journal of Rock
- Mechanics, Mining Science and Geomechanical Abstracts, v. 16, p.
- 225–234.
- Krapez, B., 1993, Sequence stratigraphy of the Archean supracrustal belts of
- the Pilbara block, Western Australia: Precambrian Research, v. 60, p. 1–45.
- Lapwood, E.R., 1948, Convection of fluid in a porous medium: Cambridge
- Philosophical Society Proceedings, v. 44, p. 508–521.
- Large, R.R., Doyle, M., Raymond, O.L., Cooke, D., Jones, A., and Heasman,
- L., 1996, Evaluation of the role of Cambrian granites in the genesis of
- world class VHMS deposits in Tasmania: Ore Geology Reviews, v. 10, p.
- 215–230.
- Lister, C.R.B., 1974, On the penetration of water into hot rock: Geophysical
- Journal of the Royal Astronomical Society, v. 39, p. 465–509.
- Lowell, R.P., and Burnell, D.K., 1991, Mathematical modeling of conductive
- heat transfer from a freezing, convecting magma chamber to a single-pass
- hydrothermal system: Implications for seafloor black smokers: Earth and
- Planetary Science Letters, v. 104, p. 59–69.
- Lowell, R.P., and Rona, P.A., 1985, Hydrothermal models for the generation
- of massive sulfide ore deposits: Journal of Geophysical Research, v. 90, p.
- 8,769–8,783.
- Martin, J.T., and Lowell, R.P., 1997, On thermoelasticity and silica precipitation
- in hydrothermal systems: Numerical modeling of laboratory experiments:
- Journal of Geophysical Research, v. 102, p. 12,095–12,107.
- McPhie, J., Doyle, M., and Allen, R., 1993, Volcanic textures—a guide to the
- interpretation of textures in volcanic rocks: Hobart, Centre for Ore Deposits
- Research, University of Tasmania, 196 p.
- Miller, C., Halley, S., Green, G., and Jones, M., 2001, Discovery of the West
- 45 volcanic-hosted massive sulfide deposit using oxygen isotopes and REE
- geochemistry: ECONOMIC GEOLOGY, v. 96, p. 1227–1237.
- Miyashiro, A., 1994, Metamorphic petrology: London, UCL Press, 404 p.
- Morant, P., 1995, The Panorama Zn-Cu VMS deposits, Western Australia:
- Australian Institute of Geologist Bulletin, v. 16, p. 75–84.
- Morrow, C.A., and Byerlee, J.D., 1992, Permeability of core samples from
- Cajon Pass scientific drill hole: results from 2100 to 3500 m depth: Journal
- of Geophysical Research, v. 97, p. 5145–5151.
- Morrow, C., Moore, D., and Lockner, D., 1997, Permeability reduction in
- granite under hydrothermal conditions: EOS, v. 78, p. 711.
- Munha, J., Barriga, F.J.A.S., and Kerrich, R., 1986, High 18O ore-forming fluids
- in volcanic-hosted base metal massive sulfide deposits: Geologic,
- 18O/16O, and D/H evidence from the Iberian Pyrite Belt; Crandon, Wisconsin,
- and Blue Hill, Maine: ECONOMIC GEOLOGY, v. 81, p. 530–552.
- Norton, D., and Knapp, R., 1977, Transport phenomena in hydrothermal systems:
- The nature of porosity: American Journal of Science, v. 277, p.
- 913–936.
- Ohmoto, H., Mizukami, M., Drummond, S.E., Eldridge, C.S., Pisutha-
- Arnond, V., and Lenagh, T.C., 1983, Chemical processes of kuroko formation:
- ECONOMIC GEOLOGY MONOGRAPH 5, p. 570–604.
- Paradis, S., Taylor, B.E., Watkinson, D. H., and Jonasson, I. R., 1993, Oxygen
- isotope zonation and alteration in the northern Noranda district, Quebec:
- Evidence for hydrothermal fluid flow: ECONOMIC GEOLOGY, v. 88, p.
- 1512–1525.
- Rosenberg, N.D., Spera, F.J., and Haymon, R.M., 1993, The relationship between
- flow and permeability field in seafloor hydrothermal systems: Earth
- and Planetary Science Letters, v. 116, p. 135–153.
- Russell, J.K., and Stasiuk, M.V., 1997, Characterization of volcanic deposits
- with ground-penetrating radar: Bulletin Volcanologique, v. 58, p. 515–527.
- Rust, A.C., Russell, J.K., and Knight, R.J., 1999, Dielectric constant as a predictor
- of porosity in dry volcanic rocks: Journal of Volcanology and Geothermal
- Research, v. 91, p. 79–96.
- Sanford, W.E., and Ingebritsen, S.E., 1998, Groundwater in geological
- processes: Cambridge, University of Cambridge Press, 341 p.
- Schiffman, P., and Smith, B. M., 1988, Petrology and oxygen isotope geochemistry
- of a fossil seawater hydrothermal system within the Solea graben,
- northern Troodos Ophiolite, Cyprus: Journal of Geophysical Research, v.
- 93, p. 4612–4624.
- Schultz, A., Delaney, J.R., and McDuff, R.E., 1992, On the partitioning of
- heat flux between diffuse and point source seafloor venting: Journal of
- Geophysical Research, v. 97, p. 12,229–12,314.
- SIPA Resources International NL, 2001, Annual Report: West Perth, Australia
- <http://www.sipa.com. au/anreps.html>.
- Sleep, N.H., 1991, Hydrothermal circulation, anhydrite precipitation, and
- thermal structure at ridge axes: Journal of Geophysical Research, v. 96, p.
- 2375–2387.
- Snelgrove, S.H., and Forster, C.B., 1996, Impact of seafloor sediment permeability
- and thickness on off-axis hydrothermal circulation: Juan de Fuca
- Ridge eastern flank: Journal of Geophysical Research, v. 101, p. 2915–2925.
- Solomon, M., Walshe, J.L., and Eastoe, C.J., 1987, Experiments on convection
- and their relevance to the genesis of massive sulphide deposits: Australian
- Journal of Earth Sciences, v. 34, p. 311–323.
- Stanton, R.L., 1985, Stratiform ores and geological processes: Journal and
- Proceedings of the Royal Society of New South Wales, v. 118, p. 77–100.
- ——1994, Ore elements in arc lavas: Oxford Monograph on Geology and
- Geophysics 29, 391 p.
- Stevenson, R.J., Briggs, R.M., and Hodder, A.P.W., 1993, Emplacement history
- of a low-viscosity, fountain-fed pantelleritic lava flow: Journal of Volcanology
- and Geothermal Research, v. 57, p. 39–56.
- ——1994, Physical volcanology and emplacement history of the Ben
- Lomond rhyolite lava flow, Taupo volcanic centre, New Zealand: New
- Zealand Journal of Geology and Geophysics, v. 37, p. 345–358.
- Strens, M.R., and Cann, J.R., 1986, A fracture-loop thermal balance model
- of black smoker circulation: Tectonophysics, v. 122, p. 307–324.
- Taylor, B.E., and South, B.C., 1985, Regional stable isotope systematics of
- hydrothermal alteration and massive sulfide deposition in the West Shasta
- district, California: ECONOMIC GEOLOGY, v. 80, p. 2149–2163.
- Van Kranendonk, M.J., 1998, Litho-tectonic and structural components of
- the North Shaw 1:100 000 sheet, Archean Pilbara craton: Geological Survey
- of Western Australia Annual Review 1997-1998, p. 63–70.
- Van Kranendonk, M.J., and Morant, P., 1998, Revised Archean stratigraphy
- of the North Shaw 1:100 000 sheet, Pilbara Craton: Geological Survey of
- Western Australia Annual Review 1997-1998, p. 55–62.
- Vearncombe, S., and Kerrich, R., 1999, Geochemistry and geodynamic setting
- of volcanic and plutonic rocks associated with early Archean volcanogenic
- massive sulphide mineralization, Pilbara craton: Precambrian
- Research, v. 98, p. 243–270.
- Vearncombe, S., Barley, M.E., Groves, N.J., McNaughton, Mikucki, E.J., and
- Vearncombe, J.R., 1995, 3.26 Ga black smoker-type mineralization in the
- Strelley Belt, Pilbara craton, Western Australia: Journal of the Geological
- Society of London, v. 152, p. 587–590.
- Vearncombe, S., Vearncombe, J.R., and Barley, M.E., 1998, Fault and stratigraphic
- controls on volcanogenic massive sulphide deposits in the Strelley
- belt, Pilbara craton, Western Australia: Precambrian Research, v. 88, p.
- 67–82.
- Williams, C.F., Narasimhan, T.N., Anderson, R.N., Zoback, M.D., and
- Becker, K., 1986, Convection in the oceanic crust: Simulation of observation
- from deep-sea drilling project hole, 504B, Costa Rica rift: Journal of
- Geophysical Research, v. 91, p. 4877–4889.
- Xu, W., andLowell, R.P., 1977, Numerical modeling of two-phase seafloor hydrothermal
- systems caused by dike intrusion: EOS Transactions of the
- American Geophysical Union, v. 77, p. 46.
- Yang, J., 2002, Influence of normal faults and basement topography on ridgeflank
- hydrothermal fluid circulation: Geophysical Journal International, v.
- 51, p. 83–87.
- Yang, J., and Large, R., 2001, Computational modelling of hydrothermal oreforming
- fluid migration in complex earth structures, in Xie, H., Wang, Y.,
- and Jiang, Y., eds., Computer application in the mineral industries: Rotterdam,
- A.A. Balkema, p. 115–120.
- Yang, J., Edwards, R.N., Molson, J.W., and Sudicky, E.A., 1996, Three-dimensional
- numerical simulations of the hydrothermal system within the
- TAG-like sulfide mound: Geophysical Research Letters, v. 23, p.
- 3475–3478.
- Yang, J., Latychev, K., and Edwards, R.N., 1998, Numerical computation of
- hydrothermal fluid circulation in fractured Earth structures: Geophysical
- Journal International, v. 135, p. 627–649.
- Zoth, G., and Haenel, R., 1988, Appendix 1: Thermal conductivity, in
- Haenel, R., Rybach, L., and Stegena, eds., Handbook of terrestrial heatflow
- density determination: Dortrecht, Kluwer Academic Publishers, p.
- 449–466." name="eprints.referencetext" />
- <meta content="Schardt, C. and Yang, J. and Large, R.R. (2005) Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia. Economic Geology, 100 (3). pp. 547-566. ISSN 0361-0128" name="eprints.citation" />
- <meta content="http://eprints.utas.edu.au/2040/3/Schardt.Yang.Large.ECONGEOL.2005.pdf" name="eprints.document_url" />
- <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
- <meta content="Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia" name="DC.title" />
- <meta content="Schardt, C." name="DC.creator" />
- <meta content="Yang, J." name="DC.creator" />
- <meta content="Large, R.R." name="DC.creator" />
- <meta content="260100 Geology" name="DC.subject" />
- <meta content="Exceptional exposure of the Archean Pilbara block in Western Australia reveals a cross section through an
- Archean massive sulfide-hosting volcanic succession with underlying subvolcanic intrusion in the Panorama
- district. A numerical model based on available detailed geologic information has been constructed to simulate
- heat and fluid flow in the Panorama district. The modeling provides insight into the evolution of the hydrothermal
- system and evaluates key geologic parameters and their influence on fluid-flow, hydrothermal circulation,
- and the genesis of massive sulfide orebodies. The model simulates important aspects of the Panorama
- massive sulfide district, such as temperature distribution, relative alteration zonation, and the size and distribution
- of orebodies. Predicted temperatures ranging from 150ºC at the top of the volcanic pile to ~400ºC at the
- andesite-diorite interface are comparable to temperature estimates based on previously published oxygen isotope
- mapping. Modeled fluid discharge temperatures are highest for the Sulphur Springs deposit (300º–400ºC)
- and lower for the Kangaroo Caves and other deposits (250º–350ºC). The most favorable conditions to reproduce
- the orebodies and their related alteration zonation occur at anisotropic rock permeabilities comparable
- to the upper oceanic crust (10–15–10–14 m2) and higher fault permeabilities (10–14–10–13 m2) with a specific fault
- arrangement similar to that mapped in the field. The 4.6 million metric tons (Mt) Sulphur Springs orebody is
- predicted to form in less than 5,000 yr, assuming a hydrothermal fluid with seawater salinity, 10 ppm base metal
- concentration, and a low deposition efficiency (≤10%); other deposits form above the faults under similar conditions.
- A large range of base metal concentrations in the fluids can account for the known orebodies, but high
- temperatures (≥250ºC) and high-flow velocities (>10–7 m/s) are necessary to produce the observed alteration
- patterns and distribution of ore deposits. Results indicate that the establishment of a significant hydrothermal
- system capable of forming economic massive sulfide deposits is favored in fresh volcanic rock packages that
- have not been affected by earlier compaction or alteration. Under these conditions, economic massive sulfide
- orebodies (>5 Mt of 10% Zn + Cu) may form in a few thousand years, although the overall lifespan of the hydrothermal
- system may be between 30,000 and ~200,000 yr, depending on the variations in rock and fault permeability
- with time.
- " name="DC.description" />
- <meta content="2005-05" name="DC.date" />
- <meta content="Article" name="DC.type" />
- <meta content="PeerReviewed" name="DC.type" />
- <meta content="application/pdf" name="DC.format" />
- <meta content="http://eprints.utas.edu.au/2040/3/Schardt.Yang.Large.ECONGEOL.2005.pdf" name="DC.identifier" />
- <meta content="http://dx.doi.org/10.2113/100.3.547" name="DC.relation" />
- <meta content="Schardt, C. and Yang, J. and Large, R.R. (2005) Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia. Economic Geology, 100 (3). pp. 547-566. ISSN 0361-0128" name="DC.identifier" />
- <meta content="http://eprints.utas.edu.au/2040/" name="DC.relation" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/BibTeX/epprod-eprint-2040.bib" title="BibTeX" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/ContextObject/epprod-eprint-2040.xml" title="OpenURL ContextObject" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/ContextObject::Dissertation/epprod-eprint-2040.xml" title="OpenURL Dissertation" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/ContextObject::Journal/epprod-eprint-2040.xml" title="OpenURL Journal" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/DC/epprod-eprint-2040.txt" title="Dublin Core" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/DIDL/epprod-eprint-2040.xml" title="DIDL" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/EndNote/epprod-eprint-2040.enw" title="EndNote" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/HTML/epprod-eprint-2040.html" title="HTML Citation" type="text/html; charset=utf-8" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/METS/epprod-eprint-2040.xml" title="METS" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/MODS/epprod-eprint-2040.xml" title="MODS" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/RIS/epprod-eprint-2040.ris" title="Reference Manager" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/Refer/epprod-eprint-2040.refer" title="Refer" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/Simple/epprod-eprint-2040text" title="Simple Metadata" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/Text/epprod-eprint-2040.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/XML/epprod-eprint-2040.xml" title="EP3 XML" type="text/xml" />
-
- </head>
- <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
-
- <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
-
-
-
-
- <table width="795" border="0" cellspacing="0" cellpadding="0">
- <tr>
- <td><script language="JavaScript1.2">mmLoadMenus();</script>
- <table border="0" cellpadding="0" cellspacing="0" width="795">
- <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
- <tr>
- <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
- </tr>
- <tr>
- <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
- <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
- <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
- <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
- <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
- <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
- <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
- <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
- <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
- <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
- <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
- </tr>
- <tr>
- <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
- <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
- </tr>
- <tr>
- <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
- <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
- </tr>
- </table></td>
- </tr>
- <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
- <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
- <td align="right" style="white-space: nowrap">
- <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
- <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
- <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
- <input type="hidden" name="_order" value="bytitle" />
- <input type="hidden" name="basic_srchtype" value="ALL" />
- <input type="hidden" name="_satisfyall" value="ALL" />
- </form>
- </td>
- </tr></table></td></tr>
- <tr>
- <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
-
-
- <div align="center">
-
- <table width="720" class="ep_tm_main"><tr><td align="left">
- <h1 class="ep_tm_pagetitle">Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia</h1>
- <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Schardt, C.</span> and <span class="person_name">Yang, J.</span> and <span class="person_name">Large, R.R.</span> (2005) <xhtml:em>Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia.</xhtml:em> Economic Geology, 100 (3). pp. 547-566. ISSN 0361-0128</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2040/3/Schardt.Yang.Large.ECONGEOL.2005.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2040/3/Schardt.Yang.Large.ECONGEOL.2005.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />949Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2574" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.2113/100.3.547">http://dx.doi.org/10.2113/100.3.547</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Exceptional exposure of the Archean Pilbara block in Western Australia reveals a cross section through an
- Archean massive sulfide-hosting volcanic succession with underlying subvolcanic intrusion in the Panorama
- district. A numerical model based on available detailed geologic information has been constructed to simulate
- heat and fluid flow in the Panorama district. The modeling provides insight into the evolution of the hydrothermal
- system and evaluates key geologic parameters and their influence on fluid-flow, hydrothermal circulation,
- and the genesis of massive sulfide orebodies. The model simulates important aspects of the Panorama
- massive sulfide district, such as temperature distribution, relative alteration zonation, and the size and distribution
- of orebodies. Predicted temperatures ranging from 150ºC at the top of the volcanic pile to ~400ºC at the
- andesite-diorite interface are comparable to temperature estimates based on previously published oxygen isotope
- mapping. Modeled fluid discharge temperatures are highest for the Sulphur Springs deposit (300º–400ºC)
- and lower for the Kangaroo Caves and other deposits (250º–350ºC). The most favorable conditions to reproduce
- the orebodies and their related alteration zonation occur at anisotropic rock permeabilities comparable
- to the upper oceanic crust (10–15–10–14 m2) and higher fault permeabilities (10–14–10–13 m2) with a specific fault
- arrangement similar to that mapped in the field. The 4.6 million metric tons (Mt) Sulphur Springs orebody is
- predicted to form in less than 5,000 yr, assuming a hydrothermal fluid with seawater salinity, 10 ppm base metal
- concentration, and a low deposition efficiency (≤10%); other deposits form above the faults under similar conditions.
- A large range of base metal concentrations in the fluids can account for the known orebodies, but high
- temperatures (≥250ºC) and high-flow velocities (>10–7 m/s) are necessary to produce the observed alteration
- patterns and distribution of ore deposits. Results indicate that the establishment of a significant hydrothermal
- system capable of forming economic massive sulfide deposits is favored in fresh volcanic rock packages that
- have not been affected by earlier compaction or alteration. Under these conditions, economic massive sulfide
- orebodies (>5 Mt of 10% Zn + Cu) may form in a few thousand years, although the overall lifespan of the hydrothermal
- system may be between 30,000 and ~200,000 yr, depending on the variations in rock and fault permeability
- with time.
- </p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">VHMS, ore genesis, ore fluids, sea floor ore deposits, VMS, Cu-Pb-Zn</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences > 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2040</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">04 Oct 2007 15:58</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2040;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=2040">item control page</a></p>
- </td></tr></table>
- </div>
-
-
-
- <!-- InstanceEndEditable --></td>
- </tr>
- <tr>
- <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
- <table width="795" border="0" align="left" cellpadding="0" class="footer">
- <tr valign="top">
- <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
- </tr>
- <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
- <tr valign="top">
- <td width="68%" class="footer">Authorised by the University Librarian<br />
- © University of Tasmania ABN 30 764 374 782<br />
- <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td>
- <td width="32%"><div align="right">
- <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
- <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
- </a></p>
- </div></td>
- </tr>
- <tr valign="top">
- <td><p> </p></td>
- <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
- </tr>
- </table>
- <!-- #EndLibraryItem -->
- <div align="center"></div></td>
- </tr>
- </table>
-
- </body>
- </html>