Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2040.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Schardt, C." name="eprints.creators_name" />
  14. <meta content="Yang, J." name="eprints.creators_name" />
  15. <meta content="Large, R.R." name="eprints.creators_name" />
  16. <meta content="" name="eprints.creators_id" />
  17. <meta content="" name="eprints.creators_id" />
  18. <meta content="Ross.Large@utas.edu.au" name="eprints.creators_id" />
  19. <meta content="article" name="eprints.type" />
  20. <meta content="2007-10-04 05:58:49" name="eprints.datestamp" />
  21. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  22. <meta content="show" name="eprints.metadata_visibility" />
  23. <meta content="Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia" name="eprints.title" />
  24. <meta content="pub" name="eprints.ispublished" />
  25. <meta content="260100" name="eprints.subjects" />
  26. <meta content="restricted" name="eprints.full_text_status" />
  27. <meta content="VHMS, ore genesis, ore fluids, sea floor ore deposits, VMS, Cu-Pb-Zn" name="eprints.keywords" />
  28. <meta content="Exceptional exposure of the Archean Pilbara block in Western Australia reveals a cross section through an
  29. Archean massive sulfide-hosting volcanic succession with underlying subvolcanic intrusion in the Panorama
  30. district. A numerical model based on available detailed geologic information has been constructed to simulate
  31. heat and fluid flow in the Panorama district. The modeling provides insight into the evolution of the hydrothermal
  32. system and evaluates key geologic parameters and their influence on fluid-flow, hydrothermal circulation,
  33. and the genesis of massive sulfide orebodies. The model simulates important aspects of the Panorama
  34. massive sulfide district, such as temperature distribution, relative alteration zonation, and the size and distribution
  35. of orebodies. Predicted temperatures ranging from 150ºC at the top of the volcanic pile to ~400ºC at the
  36. andesite-diorite interface are comparable to temperature estimates based on previously published oxygen isotope
  37. mapping. Modeled fluid discharge temperatures are highest for the Sulphur Springs deposit (300º–400ºC)
  38. and lower for the Kangaroo Caves and other deposits (250º–350ºC). The most favorable conditions to reproduce
  39. the orebodies and their related alteration zonation occur at anisotropic rock permeabilities comparable
  40. to the upper oceanic crust (10–15–10–14 m2) and higher fault permeabilities (10–14–10–13 m2) with a specific fault
  41. arrangement similar to that mapped in the field. The 4.6 million metric tons (Mt) Sulphur Springs orebody is
  42. predicted to form in less than 5,000 yr, assuming a hydrothermal fluid with seawater salinity, 10 ppm base metal
  43. concentration, and a low deposition efficiency (≤10%); other deposits form above the faults under similar conditions.
  44. A large range of base metal concentrations in the fluids can account for the known orebodies, but high
  45. temperatures (≥250ºC) and high-flow velocities (>10–7 m/s) are necessary to produce the observed alteration
  46. patterns and distribution of ore deposits. Results indicate that the establishment of a significant hydrothermal
  47. system capable of forming economic massive sulfide deposits is favored in fresh volcanic rock packages that
  48. have not been affected by earlier compaction or alteration. Under these conditions, economic massive sulfide
  49. orebodies (>5 Mt of 10% Zn + Cu) may form in a few thousand years, although the overall lifespan of the hydrothermal
  50. system may be between 30,000 and ~200,000 yr, depending on the variations in rock and fault permeability
  51. with time.
  52. " name="eprints.abstract" />
  53. <meta content="2005-05" name="eprints.date" />
  54. <meta content="published" name="eprints.date_type" />
  55. <meta content="Economic Geology" name="eprints.publication" />
  56. <meta content="100" name="eprints.volume" />
  57. <meta content="3" name="eprints.number" />
  58. <meta content="547-566" name="eprints.pagerange" />
  59. <meta content="10.2113/100.3.547" name="eprints.id_number" />
  60. <meta content="TRUE" name="eprints.refereed" />
  61. <meta content="0361-0128" name="eprints.issn" />
  62. <meta content="http://dx.doi.org/10.2113/100.3.547" name="eprints.official_url" />
  63. <meta content="Appold, M.S., and Garven, G., 1999, The hydrology of ore formation in the
  64. Southwest Missouri district: Numerical models of topography-driven fluid
  65. flow during the Ouachita orogeny: ECONOMIC GEOLOGY, v. 94, p. 913–936.
  66. Barley, M.E., 1993, Volcanic, sedimentary and tectonostratigraphic environments
  67. of the ~3.46 Ga Warrawoona megasequence: A review: Precambrian
  68. Research, v. 60, p. 47–67.
  69. Barrie, C.T., Cathles, L.M., and Erendi, A., 1999a, Finite element heat and
  70. fluid-flow computer simulations of a deep ultramafic sill model for the
  71. Giant Kidd Creek volcanic-associated massive sulfide deposit, Abititi subprovince,
  72. Canada: ECONOMIC GEOLOGY MONOGRAPH 10, p. 529–540.
  73. Barrie, C.T., Cathles, L.M., Erendi, A., Schwaiger, H., and Murray, C.,
  74. 1999b, Heat and fluid flow in volcanic-associated massive sulfide-forming
  75. hydrothermal systems: Reviews in Economic Geology, v. 8, p. 201–219.
  76. Bear, J., 1972, Dynamics of fluids in porous media: New York, Elsevier, 764
  77. p.
  78. Becker, K., 1985, Large-scale electrical resistivity and bulk porosity of the
  79. oceanic crust, Deep Sea Drilling Project hole 504B, Costa Rica Rift: Deep
  80. Sea Drilling Project, v. 83, p. 419–427.
  81. ——1990, Measurement of the permeability of the upper oceanic crust at
  82. hole 395A, ODP Leg 109: Proceedings of the Ocean Drilling Project, Scientific
  83. Results, v. 106-109, p. 213–222.
  84. Brauhart, C.W., 1999, Regional alteration systems associated with Archean
  85. volcanogenic massive sulfide deposits at Panorama, Pilbara, Western Australia:
  86. Unpublished Ph.D. thesis, Nedlands, WA, University of Western
  87. Australia, 194 p.
  88. Brauhart, C.W., Groves, D., and Morant, P., 1998, Regional alteration systems
  89. associated with volcanogenic massive sulfide mineralization at
  90. Panorama, Pilbara, Western Australia: ECONOMIC GEOLOGY, v. 93, p.
  91. 292–303
  92. Brauhart, C.W., Huston, D.L., and Andrew, A.S., 2000, Oxygen isotope mapping
  93. in the Panorama VMS district, Pilbara craton, Western Australia: Applications
  94. to estimating temperatures of alteration and to exploration: Mineralium
  95. Deposita, v. 35, p. 727–740.
  96. Brauhart, C.W., Huston, D.L., Groves, D.I., Mikucki, E.J., and Stephen,
  97. J.G., 2001, Geochemical mass transfer patterns as indicators of the architecture
  98. of a complete volcanogenic massive-sulfide hydrothermal alteration
  99. system in the Panorama district, Pilbara, Western Australia: ECONOMIC GEOLOGY,
  100. v. 96, p. 1263–1278.
  101. Bruns, T.R., and Lavoie, D.L., 1994, Bulk permeability of young backarc
  102. basalt in the Lau basin from a downhole packer experiment: Proceedings
  103. of the Ocean Drilling Program, Scientific Results, v. 135, p. 805–816.
  104. Cann, J.R., Strens, M.R., and Rice, A., 1985, A simple magma-driven thermal
  105. balance model for the formation of volcanogenic massive sulphides:
  106. Earth and Planetary Science Letters, v. 76, p. 123–134.
  107. Carr, P.M., Cathles, L.M., Ioannou, S., and Barrie, C.T., 2002, The role of anhydrite
  108. deposition in sub-seafloor sill-driven hydrothermal systems [abs.]:
  109. Geological Society of America Abstracts, v. 34, p. 341.
  110. Carter, L.S., Kelley, S.A., Blackwell, D.D., and Naeser, N.D., 1998, Heat
  111. flow and thermal history of the Anadarko basin, Oklahoma: American Association
  112. of Petroleum Geologists Bulletin, v. 82, p. 291–316.
  113. Cas, R.A.F., 1992, Submarine volcanism: Eruption styles, products, and relevance
  114. to understanding the host-rock successions to VHMS deposits:
  115. ECONOMIC GEOLOGY, v. 87, p. 511–541.
  116. Cathles, L.M., 1981, Fluid flow and ore genesis of hydrothermal ore deposits:
  117. ECONOMIC GEOLOGY 75TH ANNIVERSARY VOLUME, p. 424–457.
  118. ——1983, An analysis of the hydrothermal system responsible for massive
  119. sulfide deposition in the Hokuroku basin of Japan: ECONOMIC GEOLOGY
  120. MONOGRAPH 5, p. 439–487.
  121. ——1993a, Oxygen isotope alteration in the Noranda mining district, Abitibi
  122. greenstone belt, Quebec: ECONOMIC GEOLOGY, v. 88, p. 1483–1511.
  123. ——1993b, A capless 350ºC flow zone model to explain megaplumes, salinity
  124. variations, and high-temperature veins in ridge axis hydrothermal systems:
  125. ECONOMIC GEOLOGY, v. 88, p. 1977–1988.
  126. Cathles, L.M., Erendi, A.H.J., and Barrie, T., 1997, How long can a hydrothermal
  127. system be sustained by a single intrusive event?: ECONOMIC
  128. GEOLOGY, v. 92, p. 766–771.
  129. Converse, D.R., Holland, H.D., and Edmond, J.M., 1984, Flow rates in the
  130. axial hot springs of the East Pacific Rise (21ºN): Implications for the heat
  131. budget and the formation of massive sulfide deposits: Earth and Planetary
  132. Science Letters, v. 69, p. 159–175.
  133. Davis, E.E., Chapman, D.S., and Forster, C.B., 1996, Observations concerning
  134. the vigour of hydrothermal circulation in young oceanic crust: Journal
  135. of Geophysical Research, v. 101, p. 2927–2942.
  136. Dickson, P., Schulz, A., and Woods, A., 1995, Preliminary modelling of hydrothermal
  137. circulation within mid-ocean ridge sulphide structures: Geological
  138. Society of London Special Publication, v. 87, p. 145–157.
  139. Feely, R.A., Lewison, M.A., Massoth, G.J., Baldo, G.R., Lavelle, R.H., Byrne,
  140. R.H., Von Damm, K.L., and Curl, Jr.H.C., 1987, Compositions and dissolution
  141. of black smoker particles from active vents on the Juan de Fuca
  142. Ridge: Journal of Geophysical Research, v. 92, p. 11,347–11,363.
  143. Fehn, U., and Cathles, L., 1979, Hydrothermal convection at slow-spreading
  144. mid-ocean ridges: Tectonophysics, v. 55, p. 239–260.
  145. Fisher, A.T., and Becker, K., 1991, Heat flow, hydrothermal circulation and
  146. basalt intrusions in the Guaymas basin, Gulf of California: Earth and Planetary
  147. Science Letters, v. 103, p. 84–99.
  148. ——1995, Correlation between seafloor heat flow and basement relief: Observational
  149. and numerical examples and implications for upper crustal permeability:
  150. Journal of Geophysical Research, v. 100, p. 12,641–12,657.
  151. Fisher, A.T., and Narasimhan, T.N., 1991, Numerical simulations of hydrothermal
  152. circulation resulting from basalt intrusions in a buried spreading
  153. center: Earth and Planetary Science Letters, v. 103, p. 100–115.
  154. Fisher, A.T., Becker, K., and Narasimhan, T.N., 1994, Off-axis hydrothermal
  155. circulation: Parametric tests of a refined model of processes at Deep Sea
  156. Drilling project/Ocean Drilling Program site 504: Journal of Geophysical
  157. Research, v. 99, p. 3097–3121.
  158. Fisher, A.T., Becker, K., and Davis, E.E., 1997, The permeability of young
  159. oceanic crust east of Juan de Fuca Ridge determined using borehole thermal
  160. measurements: Geophysical Research Letters, v. 24, p. 1311–1314.
  161. Galley, A.G., 1993, Characteristics of semi-conformable alteration zones associated
  162. with volcanogenic massive sulphide districts: Journal of Geochemical
  163. Exploration, v. 48, p. 175–200.
  164. Gamo, T., Okamura, K., Charlou, J.L., Urabe, T., Auzende, J.M., Ishibashi,
  165. J., Shitashima, K., Chiba, H., Binns, R.A., Gena, K., Henry, K., Matsubayashi,
  166. O., Moss, R., Nagaya, Y., Naka, J., and Ruellan, E., 1997, Acidic and
  167. sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua
  168. New Guinea: Geology, v. 25, p. 139–142.
  169. Ginster, U., Mottl, M.J., and Von Herzen, R.P., 1994, Heat flux from black
  170. smokers on the Endeavor and Cleft segments, Juan de Fuca Ridge: Journal
  171. of Geophysical Research, v. 99, p. 4937–4950.
  172. Hannington, M.D, Jonasson, I.R., Herzig, P.M., and Petersen, S., 1995, Physical
  173. and chemical processes of seafloor mineralization at mid-ocean ridges:
  174. Geophysical Monograph, v. 91, p. 115–157.
  175. Henley, R.W., and Ellis, A.J., 1983, Geothermal systems ancient and modern:
  176. A geochemical review: Earth Science Reviews, v. 19, p. 1–50.
  177. Hickman, A.H., 1983, Geology of the Pilbara block and its environs: Western
  178. Australia Geological Survey Bulletin, v. 127, 128 p.
  179. Hoy, L.D., 1993, Regional evolution of hydrothermal fluids in the Noranda
  180. district, Quebec: Evidence from δ18O values from volcanogenic massive
  181. sulfide deposits: ECONOMIC GEOLOGY, v. 88, p. 1526–1541.
  182. Holzbecher, E., 1998, Modeling density-driven flow in porous media: Berlin,
  183. Springer, 286 p.
  184. Huston, D.L., and Large, R.R., 1987, Genetic and exploration significance of
  185. the zinc ratio (100 Zn/(Zn + Pb)) in massive sulfide systems: ECONOMIC
  186. GEOLOGY, v. 82, p. 1521–1539.
  187. Huston, D.L., Taylor, B.E., Bleeker, W., and Watanabe, D.H., 1996, Productivity
  188. of volcanic-hosted massive sulfide districts: New constraints from the
  189. δ18O of quartz phenocrysts in cogenetic felsic rocks: Geology, v. 24, p.
  190. 459–462.
  191. Huston, D.L., Brauhart, C.W., Wellman, and Andrew, A.S., 1998, Gammaray
  192. spectrometric and oxygen-isotope mapping of regional alteration halos
  193. in massive sulphide districts: An example from Panorama, central Pilbara
  194. craton: Australian Geological Survey Organisation Research Newsletter 29,
  195. p. 14–16.
  196. Kranz, R.L., Frankel, A.D., Engelder, T., and Scholz, C.H., 1979, The permeability
  197. of whole and jointed Barre granite: International Journal of Rock
  198. Mechanics, Mining Science and Geomechanical Abstracts, v. 16, p.
  199. 225–234.
  200. Krapez, B., 1993, Sequence stratigraphy of the Archean supracrustal belts of
  201. the Pilbara block, Western Australia: Precambrian Research, v. 60, p. 1–45.
  202. Lapwood, E.R., 1948, Convection of fluid in a porous medium: Cambridge
  203. Philosophical Society Proceedings, v. 44, p. 508–521.
  204. Large, R.R., Doyle, M., Raymond, O.L., Cooke, D., Jones, A., and Heasman,
  205. L., 1996, Evaluation of the role of Cambrian granites in the genesis of
  206. world class VHMS deposits in Tasmania: Ore Geology Reviews, v. 10, p.
  207. 215–230.
  208. Lister, C.R.B., 1974, On the penetration of water into hot rock: Geophysical
  209. Journal of the Royal Astronomical Society, v. 39, p. 465–509.
  210. Lowell, R.P., and Burnell, D.K., 1991, Mathematical modeling of conductive
  211. heat transfer from a freezing, convecting magma chamber to a single-pass
  212. hydrothermal system: Implications for seafloor black smokers: Earth and
  213. Planetary Science Letters, v. 104, p. 59–69.
  214. Lowell, R.P., and Rona, P.A., 1985, Hydrothermal models for the generation
  215. of massive sulfide ore deposits: Journal of Geophysical Research, v. 90, p.
  216. 8,769–8,783.
  217. Martin, J.T., and Lowell, R.P., 1997, On thermoelasticity and silica precipitation
  218. in hydrothermal systems: Numerical modeling of laboratory experiments:
  219. Journal of Geophysical Research, v. 102, p. 12,095–12,107.
  220. McPhie, J., Doyle, M., and Allen, R., 1993, Volcanic textures—a guide to the
  221. interpretation of textures in volcanic rocks: Hobart, Centre for Ore Deposits
  222. Research, University of Tasmania, 196 p.
  223. Miller, C., Halley, S., Green, G., and Jones, M., 2001, Discovery of the West
  224. 45 volcanic-hosted massive sulfide deposit using oxygen isotopes and REE
  225. geochemistry: ECONOMIC GEOLOGY, v. 96, p. 1227–1237.
  226. Miyashiro, A., 1994, Metamorphic petrology: London, UCL Press, 404 p.
  227. Morant, P., 1995, The Panorama Zn-Cu VMS deposits, Western Australia:
  228. Australian Institute of Geologist Bulletin, v. 16, p. 75–84.
  229. Morrow, C.A., and Byerlee, J.D., 1992, Permeability of core samples from
  230. Cajon Pass scientific drill hole: results from 2100 to 3500 m depth: Journal
  231. of Geophysical Research, v. 97, p. 5145–5151.
  232. Morrow, C., Moore, D., and Lockner, D., 1997, Permeability reduction in
  233. granite under hydrothermal conditions: EOS, v. 78, p. 711.
  234. Munha, J., Barriga, F.J.A.S., and Kerrich, R., 1986, High 18O ore-forming fluids
  235. in volcanic-hosted base metal massive sulfide deposits: Geologic,
  236. 18O/16O, and D/H evidence from the Iberian Pyrite Belt; Crandon, Wisconsin,
  237. and Blue Hill, Maine: ECONOMIC GEOLOGY, v. 81, p. 530–552.
  238. Norton, D., and Knapp, R., 1977, Transport phenomena in hydrothermal systems:
  239. The nature of porosity: American Journal of Science, v. 277, p.
  240. 913–936.
  241. Ohmoto, H., Mizukami, M., Drummond, S.E., Eldridge, C.S., Pisutha-
  242. Arnond, V., and Lenagh, T.C., 1983, Chemical processes of kuroko formation:
  243. ECONOMIC GEOLOGY MONOGRAPH 5, p. 570–604.
  244. Paradis, S., Taylor, B.E., Watkinson, D. H., and Jonasson, I. R., 1993, Oxygen
  245. isotope zonation and alteration in the northern Noranda district, Quebec:
  246. Evidence for hydrothermal fluid flow: ECONOMIC GEOLOGY, v. 88, p.
  247. 1512–1525.
  248. Rosenberg, N.D., Spera, F.J., and Haymon, R.M., 1993, The relationship between
  249. flow and permeability field in seafloor hydrothermal systems: Earth
  250. and Planetary Science Letters, v. 116, p. 135–153.
  251. Russell, J.K., and Stasiuk, M.V., 1997, Characterization of volcanic deposits
  252. with ground-penetrating radar: Bulletin Volcanologique, v. 58, p. 515–527.
  253. Rust, A.C., Russell, J.K., and Knight, R.J., 1999, Dielectric constant as a predictor
  254. of porosity in dry volcanic rocks: Journal of Volcanology and Geothermal
  255. Research, v. 91, p. 79–96.
  256. Sanford, W.E., and Ingebritsen, S.E., 1998, Groundwater in geological
  257. processes: Cambridge, University of Cambridge Press, 341 p.
  258. Schiffman, P., and Smith, B. M., 1988, Petrology and oxygen isotope geochemistry
  259. of a fossil seawater hydrothermal system within the Solea graben,
  260. northern Troodos Ophiolite, Cyprus: Journal of Geophysical Research, v.
  261. 93, p. 4612–4624.
  262. Schultz, A., Delaney, J.R., and McDuff, R.E., 1992, On the partitioning of
  263. heat flux between diffuse and point source seafloor venting: Journal of
  264. Geophysical Research, v. 97, p. 12,229–12,314.
  265. SIPA Resources International NL, 2001, Annual Report: West Perth, Australia
  266. <http://www.sipa.com. au/anreps.html>.
  267. Sleep, N.H., 1991, Hydrothermal circulation, anhydrite precipitation, and
  268. thermal structure at ridge axes: Journal of Geophysical Research, v. 96, p.
  269. 2375–2387.
  270. Snelgrove, S.H., and Forster, C.B., 1996, Impact of seafloor sediment permeability
  271. and thickness on off-axis hydrothermal circulation: Juan de Fuca
  272. Ridge eastern flank: Journal of Geophysical Research, v. 101, p. 2915–2925.
  273. Solomon, M., Walshe, J.L., and Eastoe, C.J., 1987, Experiments on convection
  274. and their relevance to the genesis of massive sulphide deposits: Australian
  275. Journal of Earth Sciences, v. 34, p. 311–323.
  276. Stanton, R.L., 1985, Stratiform ores and geological processes: Journal and
  277. Proceedings of the Royal Society of New South Wales, v. 118, p. 77–100.
  278. ——1994, Ore elements in arc lavas: Oxford Monograph on Geology and
  279. Geophysics 29, 391 p.
  280. Stevenson, R.J., Briggs, R.M., and Hodder, A.P.W., 1993, Emplacement history
  281. of a low-viscosity, fountain-fed pantelleritic lava flow: Journal of Volcanology
  282. and Geothermal Research, v. 57, p. 39–56.
  283. ——1994, Physical volcanology and emplacement history of the Ben
  284. Lomond rhyolite lava flow, Taupo volcanic centre, New Zealand: New
  285. Zealand Journal of Geology and Geophysics, v. 37, p. 345–358.
  286. Strens, M.R., and Cann, J.R., 1986, A fracture-loop thermal balance model
  287. of black smoker circulation: Tectonophysics, v. 122, p. 307–324.
  288. Taylor, B.E., and South, B.C., 1985, Regional stable isotope systematics of
  289. hydrothermal alteration and massive sulfide deposition in the West Shasta
  290. district, California: ECONOMIC GEOLOGY, v. 80, p. 2149–2163.
  291. Van Kranendonk, M.J., 1998, Litho-tectonic and structural components of
  292. the North Shaw 1:100 000 sheet, Archean Pilbara craton: Geological Survey
  293. of Western Australia Annual Review 1997-1998, p. 63–70.
  294. Van Kranendonk, M.J., and Morant, P., 1998, Revised Archean stratigraphy
  295. of the North Shaw 1:100 000 sheet, Pilbara Craton: Geological Survey of
  296. Western Australia Annual Review 1997-1998, p. 55–62.
  297. Vearncombe, S., and Kerrich, R., 1999, Geochemistry and geodynamic setting
  298. of volcanic and plutonic rocks associated with early Archean volcanogenic
  299. massive sulphide mineralization, Pilbara craton: Precambrian
  300. Research, v. 98, p. 243–270.
  301. Vearncombe, S., Barley, M.E., Groves, N.J., McNaughton, Mikucki, E.J., and
  302. Vearncombe, J.R., 1995, 3.26 Ga black smoker-type mineralization in the
  303. Strelley Belt, Pilbara craton, Western Australia: Journal of the Geological
  304. Society of London, v. 152, p. 587–590.
  305. Vearncombe, S., Vearncombe, J.R., and Barley, M.E., 1998, Fault and stratigraphic
  306. controls on volcanogenic massive sulphide deposits in the Strelley
  307. belt, Pilbara craton, Western Australia: Precambrian Research, v. 88, p.
  308. 67–82.
  309. Williams, C.F., Narasimhan, T.N., Anderson, R.N., Zoback, M.D., and
  310. Becker, K., 1986, Convection in the oceanic crust: Simulation of observation
  311. from deep-sea drilling project hole, 504B, Costa Rica rift: Journal of
  312. Geophysical Research, v. 91, p. 4877–4889.
  313. Xu, W., andLowell, R.P., 1977, Numerical modeling of two-phase seafloor hydrothermal
  314. systems caused by dike intrusion: EOS Transactions of the
  315. American Geophysical Union, v. 77, p. 46.
  316. Yang, J., 2002, Influence of normal faults and basement topography on ridgeflank
  317. hydrothermal fluid circulation: Geophysical Journal International, v.
  318. 51, p. 83–87.
  319. Yang, J., and Large, R., 2001, Computational modelling of hydrothermal oreforming
  320. fluid migration in complex earth structures, in Xie, H., Wang, Y.,
  321. and Jiang, Y., eds., Computer application in the mineral industries: Rotterdam,
  322. A.A. Balkema, p. 115–120.
  323. Yang, J., Edwards, R.N., Molson, J.W., and Sudicky, E.A., 1996, Three-dimensional
  324. numerical simulations of the hydrothermal system within the
  325. TAG-like sulfide mound: Geophysical Research Letters, v. 23, p.
  326. 3475–3478.
  327. Yang, J., Latychev, K., and Edwards, R.N., 1998, Numerical computation of
  328. hydrothermal fluid circulation in fractured Earth structures: Geophysical
  329. Journal International, v. 135, p. 627–649.
  330. Zoth, G., and Haenel, R., 1988, Appendix 1: Thermal conductivity, in
  331. Haenel, R., Rybach, L., and Stegena, eds., Handbook of terrestrial heatflow
  332. density determination: Dortrecht, Kluwer Academic Publishers, p.
  333. 449–466." name="eprints.referencetext" />
  334. <meta content="Schardt, C. and Yang, J. and Large, R.R. (2005) Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia. Economic Geology, 100 (3). pp. 547-566. ISSN 0361-0128" name="eprints.citation" />
  335. <meta content="http://eprints.utas.edu.au/2040/3/Schardt.Yang.Large.ECONGEOL.2005.pdf" name="eprints.document_url" />
  336. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  337. <meta content="Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia" name="DC.title" />
  338. <meta content="Schardt, C." name="DC.creator" />
  339. <meta content="Yang, J." name="DC.creator" />
  340. <meta content="Large, R.R." name="DC.creator" />
  341. <meta content="260100 Geology" name="DC.subject" />
  342. <meta content="Exceptional exposure of the Archean Pilbara block in Western Australia reveals a cross section through an
  343. Archean massive sulfide-hosting volcanic succession with underlying subvolcanic intrusion in the Panorama
  344. district. A numerical model based on available detailed geologic information has been constructed to simulate
  345. heat and fluid flow in the Panorama district. The modeling provides insight into the evolution of the hydrothermal
  346. system and evaluates key geologic parameters and their influence on fluid-flow, hydrothermal circulation,
  347. and the genesis of massive sulfide orebodies. The model simulates important aspects of the Panorama
  348. massive sulfide district, such as temperature distribution, relative alteration zonation, and the size and distribution
  349. of orebodies. Predicted temperatures ranging from 150ºC at the top of the volcanic pile to ~400ºC at the
  350. andesite-diorite interface are comparable to temperature estimates based on previously published oxygen isotope
  351. mapping. Modeled fluid discharge temperatures are highest for the Sulphur Springs deposit (300º–400ºC)
  352. and lower for the Kangaroo Caves and other deposits (250º–350ºC). The most favorable conditions to reproduce
  353. the orebodies and their related alteration zonation occur at anisotropic rock permeabilities comparable
  354. to the upper oceanic crust (10–15–10–14 m2) and higher fault permeabilities (10–14–10–13 m2) with a specific fault
  355. arrangement similar to that mapped in the field. The 4.6 million metric tons (Mt) Sulphur Springs orebody is
  356. predicted to form in less than 5,000 yr, assuming a hydrothermal fluid with seawater salinity, 10 ppm base metal
  357. concentration, and a low deposition efficiency (≤10%); other deposits form above the faults under similar conditions.
  358. A large range of base metal concentrations in the fluids can account for the known orebodies, but high
  359. temperatures (≥250ºC) and high-flow velocities (>10–7 m/s) are necessary to produce the observed alteration
  360. patterns and distribution of ore deposits. Results indicate that the establishment of a significant hydrothermal
  361. system capable of forming economic massive sulfide deposits is favored in fresh volcanic rock packages that
  362. have not been affected by earlier compaction or alteration. Under these conditions, economic massive sulfide
  363. orebodies (>5 Mt of 10% Zn + Cu) may form in a few thousand years, although the overall lifespan of the hydrothermal
  364. system may be between 30,000 and ~200,000 yr, depending on the variations in rock and fault permeability
  365. with time.
  366. " name="DC.description" />
  367. <meta content="2005-05" name="DC.date" />
  368. <meta content="Article" name="DC.type" />
  369. <meta content="PeerReviewed" name="DC.type" />
  370. <meta content="application/pdf" name="DC.format" />
  371. <meta content="http://eprints.utas.edu.au/2040/3/Schardt.Yang.Large.ECONGEOL.2005.pdf" name="DC.identifier" />
  372. <meta content="http://dx.doi.org/10.2113/100.3.547" name="DC.relation" />
  373. <meta content="Schardt, C. and Yang, J. and Large, R.R. (2005) Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia. Economic Geology, 100 (3). pp. 547-566. ISSN 0361-0128" name="DC.identifier" />
  374. <meta content="http://eprints.utas.edu.au/2040/" name="DC.relation" />
  375. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/BibTeX/epprod-eprint-2040.bib" title="BibTeX" type="text/plain" />
  376. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/ContextObject/epprod-eprint-2040.xml" title="OpenURL ContextObject" type="text/xml" />
  377. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/ContextObject::Dissertation/epprod-eprint-2040.xml" title="OpenURL Dissertation" type="text/xml" />
  378. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/ContextObject::Journal/epprod-eprint-2040.xml" title="OpenURL Journal" type="text/xml" />
  379. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/DC/epprod-eprint-2040.txt" title="Dublin Core" type="text/plain" />
  380. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/DIDL/epprod-eprint-2040.xml" title="DIDL" type="text/xml" />
  381. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/EndNote/epprod-eprint-2040.enw" title="EndNote" type="text/plain" />
  382. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/HTML/epprod-eprint-2040.html" title="HTML Citation" type="text/html; charset=utf-8" />
  383. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/METS/epprod-eprint-2040.xml" title="METS" type="text/xml" />
  384. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/MODS/epprod-eprint-2040.xml" title="MODS" type="text/xml" />
  385. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/RIS/epprod-eprint-2040.ris" title="Reference Manager" type="text/plain" />
  386. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/Refer/epprod-eprint-2040.refer" title="Refer" type="text/plain" />
  387. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/Simple/epprod-eprint-2040text" title="Simple Metadata" type="text/plain" />
  388. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/Text/epprod-eprint-2040.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  389. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2040/XML/epprod-eprint-2040.xml" title="EP3 XML" type="text/xml" />
  390.  
  391. </head>
  392. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  393. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  394.  
  395.  
  396.  
  397.  
  398. <table width="795" border="0" cellspacing="0" cellpadding="0">
  399. <tr>
  400. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  401. <table border="0" cellpadding="0" cellspacing="0" width="795">
  402. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  403. <tr>
  404. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  405. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  406. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  407. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  408. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  409. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  410. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  411. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  412. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  413. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  414. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  415. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  416. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  417. </tr>
  418. <tr>
  419. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  420. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  421. </tr>
  422. <tr>
  423. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  424. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  425. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  426. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  427. </tr>
  428. <tr>
  429. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  430. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  431. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  432. </tr>
  433. <tr>
  434. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  435. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  436. </tr>
  437. <tr>
  438. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  439. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  440. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  441. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  442. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  443. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  444. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  445. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  446. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  447. </tr>
  448. <tr>
  449. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  450. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  451. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  452. </tr>
  453. <tr>
  454. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  455. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  456. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  457. </tr>
  458. </table></td>
  459. </tr>
  460. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  461. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  462. <td align="right" style="white-space: nowrap">
  463. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  464. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  465. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  466. <input type="hidden" name="_order" value="bytitle" />
  467. <input type="hidden" name="basic_srchtype" value="ALL" />
  468. <input type="hidden" name="_satisfyall" value="ALL" />
  469. </form>
  470. </td>
  471. </tr></table></td></tr>
  472. <tr>
  473. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  474.  
  475.  
  476. <div align="center">
  477. <table width="720" class="ep_tm_main"><tr><td align="left">
  478. <h1 class="ep_tm_pagetitle">Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia</h1>
  479. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Schardt, C.</span> and <span class="person_name">Yang, J.</span> and <span class="person_name">Large, R.R.</span> (2005) <xhtml:em>Numerical Heat and Fluid-Flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia.</xhtml:em> Economic Geology, 100 (3). pp. 547-566. ISSN 0361-0128</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2040/3/Schardt.Yang.Large.ECONGEOL.2005.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2040/3/Schardt.Yang.Large.ECONGEOL.2005.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />949Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2574" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.2113/100.3.547">http://dx.doi.org/10.2113/100.3.547</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Exceptional exposure of the Archean Pilbara block in Western Australia reveals a cross section through an&#13;
  480. Archean massive sulfide-hosting volcanic succession with underlying subvolcanic intrusion in the Panorama&#13;
  481. district. A numerical model based on available detailed geologic information has been constructed to simulate&#13;
  482. heat and fluid flow in the Panorama district. The modeling provides insight into the evolution of the hydrothermal&#13;
  483. system and evaluates key geologic parameters and their influence on fluid-flow, hydrothermal circulation,&#13;
  484. and the genesis of massive sulfide orebodies. The model simulates important aspects of the Panorama&#13;
  485. massive sulfide district, such as temperature distribution, relative alteration zonation, and the size and distribution&#13;
  486. of orebodies. Predicted temperatures ranging from 150ºC at the top of the volcanic pile to ~400ºC at the&#13;
  487. andesite-diorite interface are comparable to temperature estimates based on previously published oxygen isotope&#13;
  488. mapping. Modeled fluid discharge temperatures are highest for the Sulphur Springs deposit (300º–400ºC)&#13;
  489. and lower for the Kangaroo Caves and other deposits (250º–350ºC). The most favorable conditions to reproduce&#13;
  490. the orebodies and their related alteration zonation occur at anisotropic rock permeabilities comparable&#13;
  491. to the upper oceanic crust (10–15–10–14 m2) and higher fault permeabilities (10–14–10–13 m2) with a specific fault&#13;
  492. arrangement similar to that mapped in the field. The 4.6 million metric tons (Mt) Sulphur Springs orebody is&#13;
  493. predicted to form in less than 5,000 yr, assuming a hydrothermal fluid with seawater salinity, 10 ppm base metal&#13;
  494. concentration, and a low deposition efficiency (≤10%); other deposits form above the faults under similar conditions.&#13;
  495. A large range of base metal concentrations in the fluids can account for the known orebodies, but high&#13;
  496. temperatures (≥250ºC) and high-flow velocities (&gt;10–7 m/s) are necessary to produce the observed alteration&#13;
  497. patterns and distribution of ore deposits. Results indicate that the establishment of a significant hydrothermal&#13;
  498. system capable of forming economic massive sulfide deposits is favored in fresh volcanic rock packages that&#13;
  499. have not been affected by earlier compaction or alteration. Under these conditions, economic massive sulfide&#13;
  500. orebodies (&gt;5 Mt of 10% Zn + Cu) may form in a few thousand years, although the overall lifespan of the hydrothermal&#13;
  501. system may be between 30,000 and ~200,000 yr, depending on the variations in rock and fault permeability&#13;
  502. with time.&#13;
  503. </p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">VHMS, ore genesis, ore fluids, sea floor ore deposits, VMS, Cu-Pb-Zn</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2040</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">04 Oct 2007 15:58</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2040;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2040">item control page</a></p>
  504. </td></tr></table>
  505. </div>
  506.  
  507.  
  508.  
  509. <!-- InstanceEndEditable --></td>
  510. </tr>
  511. <tr>
  512. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  513. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  514. <tr valign="top">
  515. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  516. </tr>
  517. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  518. <tr valign="top">
  519. <td width="68%" class="footer">Authorised by the University Librarian<br />
  520. © University of Tasmania ABN 30 764 374 782<br />
  521. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  522. <td width="32%"><div align="right">
  523. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  524. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  525. </a></p>
  526. </div></td>
  527. </tr>
  528. <tr valign="top">
  529. <td><p>  </p></td>
  530. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  531. </tr>
  532. </table>
  533. <!-- #EndLibraryItem -->
  534. <div align="center"></div></td>
  535. </tr>
  536. </table>
  537.  
  538. </body>
  539. </html>