Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2051.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Solomon, M." name="eprints.creators_name" />
  14. <meta content="Gemmell, J.B." name="eprints.creators_name" />
  15. <meta content="Zaw, K." name="eprints.creators_name" />
  16. <meta content="Mike.Solomon@utas.edu.au" name="eprints.creators_id" />
  17. <meta content="Bruce.Gemmell@utas.edu.au" name="eprints.creators_id" />
  18. <meta content="Khin.Zaw@utas.edu.au" name="eprints.creators_id" />
  19. <meta content="article" name="eprints.type" />
  20. <meta content="2007-10-09 16:44:37" name="eprints.datestamp" />
  21. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  22. <meta content="show" name="eprints.metadata_visibility" />
  23. <meta content="Nature and origin of the fluids responsible for forming the Hellyer
  24. Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes " name="eprints.title" />
  25. <meta content="pub" name="eprints.ispublished" />
  26. <meta content="260100" name="eprints.subjects" />
  27. <meta content="restricted" name="eprints.full_text_status" />
  28. <meta content="Hellyer; Tasmania; Australia; Massive sulphide deposit; Stable isotopes" name="eprints.keywords" />
  29. <meta content="Definitive version is available online at http://www.sciencedirect.com/" name="eprints.note" />
  30. <meta content="The Hellyer massive sulphide deposit lies within the Mount Read Volcanics province of western Tasmania. Before mining, it consisted largely of pyrite, sphalerite, galena, arsenopyrite and chalcopyrite, and was overlain by discontinuous barite–sulphide and/or silica–sulphide assemblages. It overlay a downward-tapering cone of hydrothermally altered rocks that shows concentric
  31. mineral zonation and contains steeply inclined veins containing sulphide and/or barite. New laser ablation and existing conventional sulphur isotopic compositions of sulphides from the massive sulphide ore range from -5.0 per mil to 12.2 per mil. There is no significant spatial variation in sulphur isotopic composition in the sulphide ore, or evidence of significant change in the
  32. textural paragenesis, but there is considerable variation at millimetre scale within and between minerals. Apart from the few negative values, which may be of biogenic origin, the sulphur data can be explained by mixtures of sulphur reduced from seawater sulphate and that derived directly or indirectly from magma. The sulphur of the barite cap and the barite veins in the footwall (mostly 33.5–46.0 per mil) is probably also derived from seawater sulphate, and radiogenic 87Sr/86Sr values in the barite (0.70989–0.71144) suggest fluid circulation deep into the basement. delta 34 S values of disseminated sulphides in the footwall
  33. alteration cone are like those of overlying ore, the aqueous sulphur being totally reduced due to low fluid velocities and protracted rock interaction. However, unusually high delta 34 S sulphide values (up to 41.4 per mil) are found in some of the footwall vein sulphides, probably because in these veins the fluid velocities are enhanced and rock interaction limited, so that pyrite
  34. supersaturation may occur before reduction of entrained seawater sulphate is complete. High delta 34 S sulphide values (up to 45.6 per mil) also occur in ‘‘unaltered’’ volcanic rock outside the alteration cone and may be the product of local convection of seawater prior
  35. to, during, or (most probably) after massive sulphide mineralization. Fluid delta 18 O values calculated from isotopic analyses of quartz in footwall veins (8.5–11.8 per mil) and Th data range between 4.4 per mil and 3.1 per mil. Dolomite occurs with chlorite in the core of the footwall alteration cone immediately below the massive
  36. sulphide. Its isotopic composition (delta 13 C=1.5 to 2.8, delta 18 O=8.2–18.3 per mil) may reflect precipitation from an acid, seawaterderived, fluid having delta 13 C=1 per mil(the ambient seawater value), and delta 18 O ranging from 0 per mil to 6 per mil, or, alternatively, its
  37. composition is the result of mixing between modified seawater at 150 degrees C (delta 18 O=6 per mil) with 1% of fluid at 350 degrees C having delta 13 C= -6 and delta 18 O=0 per mil. Dolomites in the footwall veins (delta 13 C= -1.8 to 1.7, delta 18 O= 9.3–14.2 per mil) could be derived from an acid, seawater-derived fluid with negative delta 18 O values, or a fluid that has interacted with 600–700 Ma old, 13 C-enriched carbonates in the deep footwall during convective circulation. Both the chlorite-associated and the vein carbonates contain highly radiogenic Sr, possibly derived from Devonian metamorphic fluids.
  38. A re-interpretation of the fluid inclusion data of Khin Zaw et al. [Ore Geol. Rev. 10 (1996) 251] shows that there are three groups of fluids in the quartz of veins in the altered footwall, viz. (a) saline (6.6–14.8 wt.%) with Th = 170–246 degrees C, high K/Na, K/Ca and K/Fe values (fluid 1); (b) of similar salinity and temperature but with low K/Na, K/Ca and K/Fe values (fluid 2); and
  39. (c) an additional fluid of low salinity (2.9–7.0 wt.%) with Th = 289–322 degrees C, element ratios unknown (fluid 3). Fluid 1 has cation ratios like those of magmatic fluids in the K-silicate and phyllosilicate zones of the Panguna and Endeavour 26N porphyry copper deposits. Combined with the lack of alternative source of salts in the pre-ore rock sequences at Hellyer, fluid 1 is thought to be at least partly magmatic. Fluid 2 has cation ratios like those of modern black smoker and Kuroko ore-forming
  40. fluids, and was probably derived from both magmatic fluid and seawater; fluid 3 may be evolved seawater like that forming the deposits of the Hokuroku Basin.
  41. It is suggested that a pluton or plutonic complex of mixed crustal and lithospheric mantle parentage, like that of the volcanic rocks hosting the Hellyer orebody, was emplaced at several km depth below the deposit during faulting related to crustal extension. The heated zone over and around the pluton displaying plastic behaviour was sealed off from the overlying brittle zone in which groundwater (modified seawater) underwent convection due to heat transfer across the brittle-plastic boundary.
  42. The seal was broken intermittently due to tectonic extension or increased fluid pressure in the pluton, and magmatic fluid joined with convecting groundwater in the rising plume, leading to fluid mixing. Upward flow was focused on the Eastern Fault, the fracture system responsible for forming the basin in which the ore sulphides were sedimented." name="eprints.abstract" />
  43. <meta content="2004-08" name="eprints.date" />
  44. <meta content="published" name="eprints.date_type" />
  45. <meta content="Ore Geology Reviews" name="eprints.publication" />
  46. <meta content="25" name="eprints.volume" />
  47. <meta content="1-2" name="eprints.number" />
  48. <meta content="89-124" name="eprints.pagerange" />
  49. <meta content="10.1016/j.oregeorev.2003.11.001" name="eprints.id_number" />
  50. <meta content="TRUE" name="eprints.refereed" />
  51. <meta content="0169-1368" name="eprints.issn" />
  52. <meta content="http://dx.doi.org/10.1016/j.oregeorev.2003.11.001" name="eprints.official_url" />
  53. <meta content="Adabi, M.H., 1997a. Application of carbon isotope chemostratigraphy
  54. to the Renison dolomites, Tasmania: a Neoproterozoic
  55. age. Australian Journal of Earth Sciences 44, 767– 775.
  56. Adabi, M.H., 1997b. Sedimentology and geochemistry of Upper
  57. Jurassic (Iran) and Precambrian (Tasmania) carbonates.
  58. Unpublished PhD thesis, University of Tasmania, Hobart.
  59. 400 pp.
  60. Ayres, D.E., 1979. The mineralogy and chemical composition of the
  61. Woodlawn massive sulphide orebody. Journal of the Geological
  62. Society of Australia 26, 155–168.
  63. Benning, L.G., Wilkin, R.T., Barnes, H.L., 2000. Reaction pathways
  64. in the Fe –S system below 100 jC. Chemical Geology
  65. 167, 25–51.
  66. Berry, R.F., Crawford, A.J., 1988. The tectonic significance of
  67. Cambrian allochthonous mafic – ultramafic complexes in Tasmania.
  68. Australian Journal of Earth Sciences 35, 523– 533.
  69. Berry, R.F., Holm, O., 2001. The structure of northwestern Tasmania.
  70. Field Guide-Geological Society of Australia, Specialist
  71. Group in Tectonics and Structural Geology 11, 1– 52.
  72. Black, L.P., Seymour, D.B., Corbett, K.D., Cox, S.E., Streit, J.E.,
  73. Bottrill, R.S., Calver, C.R., Everard, J., Green, G.R., McLenaghan,
  74. M.P., Pemberton, J., Taheri, J., Turner, N.J., 1997. Dating
  75. Tasmania’s oldest geological events. Tasmanian Geological Survey
  76. Record 1997/15, 57 pp.
  77. Bradley, A., 1997. The geology and genesis of the chlorite– carbonate
  78. alteration in the footwall of the Hellyer volcanic-hosted
  79. massive sulphide (VHMS) deposit. Unpublished Honours B.Sc.
  80. thesis, University of Tasmania, Hobart. 101 pp.
  81. Brasier, M.D., 1993. Towards a carbon isotope stratigraphy of the
  82. Cambrian system: potential of the Great Basin succession. Geological
  83. Society of London Special Publication 70, 341– 350.
  84. Brooks, C., 1966. The rubidium– strontium ages of some Tasmanian
  85. igneous rocks. Journal of the Geological Society of Australia
  86. 13, 457– 469.
  87. Brown, A.V., 1989. Eo–Cambrian–Cambrian. Geological Society
  88. of Australia Special Publication 15, 47– 83.
  89. Brown, A.V., Findlay, R.H., McClenaghan, M.P., Seymour, D.B.,
  90. 1991. Synopsis of the regional geology of the Macquarie Harbour,
  91. Point Hibbs, and Montgomery 1:500 000 map sheets.
  92. Tasmanian Division of Mines and Mineral Resources, Report
  93. 1991/21, 12 pp.
  94. Bryndzia, L.T., Scott, S.D., Farr, J.E., 1983. Mineralogy, geochemistry,
  95. and mineral chemistry of siliceous ore and altered
  96. footwall rocks in the Uwamuki 2 and 4 deposits, Kosaka mine,
  97. Hokuroku district, Japan. Economic Geology Monograph 5,
  98. 507– 522.
  99. Burnham, C.W., 1979. Magmas and hydrothermal fluids. In:
  100. Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits,
  101. 2nd edition Wiley, New York, pp. 71– 136.
  102. Callaghan, T., 2001. Geology and host– rock alteration of the Henty
  103. and Mount Julia gold deposits, western Tasmania. Economic
  104. Geology 96, 1073– 1088.
  105. Calver, C.R., 1996. Reconnaissance isotope chemostratigraphy of
  106. Neoproterozoic carbonates rocks in western Tasmania. Tasmanian
  107. Geological Survey Record 1996/10 (19 pp.).
  108. Cathles, L.M., 1983. An analysis of the hydrothermal system responsible
  109. for massive sulphide deposition in the Hokuroku Basin
  110. of Japan. Economic Geology Monograph 5, 439– 487.
  111. Cathles, L.M., 1993. Oxygen isotope alteration in the Noranda
  112. mining district, Abitibi greenstone belt, Quebec. Economic Geology
  113. 88, 1483–1511.
  114. Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I.,
  115. 1980. The age curves of sulfur and oxygen isotopes in marine
  116. sulfate and their mutual interpretation. Chemical Geology 28,
  117. 199– 260.
  118. Clayton, R.N., Mayeda, T.K., 1963. The use of pentafluoride in the
  119. extraction of oxygen from oxides and silicates for isotopic analysis.
  120. Geochimica et Cosmochimica Acta 27, 43–52.
  121. Converse, D.R., Holland, H.D., Edmond, J.M., 1984. Flow rates in
  122. the axial hot springs of the East Pacific Rise (21jN): implications
  123. for the heat budget and the formation of massive sulphide deposits.
  124. Earth and Planetary Science Letters 69, 159–175.
  125. Corbett, K.D., 1992. Stratigraphic-volcanic setting of massive sulphide
  126. deposits in the Cambrian Mount Read Volcanics, Tasmania.
  127. Economic Geology 87, 564–586.
  128. Crawford, A.J., Corbett, K.D., Everard, J.L., 1992. Geochemistry of
  129. the Cambrian volcanic-hosted massive sulphide-rich Mount
  130. Read Volcanics, Tasmania, and some tectonic implications. Economic
  131. Geology 87, 597– 619.
  132. Davidson, P., 1998. The Murchison Granite. Unpublished Honours
  133. B.Sc. thesis, University of Tasmania, Hobart. 128 pp.
  134. Downs, R.C., 1993. Syn-depositional fault controls on the Hellyer
  135. volcanic-hosted massive sulphide deposit. Unpublished M.Sc.
  136. thesis, University of Tasmania, Hobart. 63 pp.
  137. Eastoe, C.J., 1978. A fluid inclusion study of the Panguna porphyry
  138. copper deposit, Bougainville, Papua New Guinea. Economic
  139. Geology 73, 721–748.
  140. Eastoe, C.J., Solomon, M., Garcia Palomero, F., 1986. Sulphur
  141. isotope study of massive and stockwork pyrite deposits at Rio
  142. Tinto, Spain. Transactions of the Institution of Mining and Metallurgy
  143. 95, B201– B207.
  144. Foden, J., Barovich, K., Jane, M., O’Halloran, G., 2001. Sr-isotopic
  145. evidence for Late Neoproterozoic rifting in the Adelaide Geosyncline
  146. at 586 Ma: implications for a Cu ore forming fluid flux.
  147. Precambrian Research 106, 291– 308.
  148. Ford, J.H., Green, D.C., 1977. An oxygen- and hydrogen-isotope
  149. study of the Panguna porphyry-copper deposit, Bougainville.
  150. Journal of the Geological Society of Australia 24, 63– 80.
  151. Fournier, R.O., 1985. The behavior of silica in hydrothermal solutions.
  152. Reviews in Economic Geology 2, 45– 61.
  153. Fournier, R.O., 1999. Hydrothermal processes related to movement
  154. of fluid from plastic into brittle rock in the magmatic-epithermal
  155. environment. Economic Geology 94, 1193– 1212.
  156. Gemmell, J.B., Fulton, R., 2001. Geology, genesis, and exploration
  157. implications of the footwall and hangingwall alteration associated
  158. with the Hellyer VHMS deposit, Tasmania, Australia. Economic
  159. Geology 96, 1003–1035.
  160. Gemmell, J.B., Large, R.R., 1992. Stringer system and alteration
  161. zones underlying the Hellyer volcanic-hosted massive sulphide
  162. deposits, northwestern Tasmania. Economic Geology
  163. 87, 620– 649.
  164. Gemmell, J.B., Large, R.R., 1993. Evolution of a VHMS hydrothermal
  165. system, Hellyer deposit, Tasmania, Australia: sulfur isotope
  166. evidence. Resource Geology Special Issue 17, 108–119.
  167. Glen, R., Walshe, J.L., Bouffler, M., Ho, T., Dean, J.A., 1995. Synand
  168. post-tectonic mineralization in the Woodlawn deposit, New
  169. South Wales, Australia. Economic Geology 90, 1857–1864.
  170. Godde´ris, Y., Francois, L.M., Veizer, J., 2001. The early Palaeozoic
  171. carbon cycle. Earth and Planetary Science Letters 190,
  172. 181– 196.
  173. Goldfarb, M.S., Converse, D.R., Holland, H.D., Edmond, J.M.,
  174. 1983. The genesis of hot spring deposits on the East Pacific
  175. Rise, 21jN. Economic Geology Monograph 5, 184– 197.
  176. Goodfellow, W.D., Peter, J.M., 1996. Sulphur isotope composition
  177. of the Brunswick N. 12 massive sulphide deposit, Bathurst
  178. Mining Camp, New Brunswick: implications for ambient environment,
  179. sulphur source, and ore genesis. Canadian Journal of
  180. Earth Sciences 33, 231– 251.
  181. Green, G.R., Taheri, J., 1992. Stable isotopes and geochemistry as
  182. exploration indicators. Geological Survey of Tasmania Bulletin
  183. 70, 84– 91.
  184. Green, G.R., Solomon, M., Walshe, J.L., 1981. The formation of
  185. the volcanic-hosted massive sulphide ore deposit at Rosebery,
  186. Tasmania. Economic Geology 76, 304–338.
  187. Green, G.R., Ohmoto, H., Date, J., Takahashi, T., 1983. Whole-rock
  188. oxygen isotope distribution in the Fukazawa-Kosaka area,
  189. Hokuroku district, Japan, and its potential application to mineral
  190. exploration. Economic Geology Monograph 5, 395– 411.
  191. Gulson, B.L., 1984. Lead isotopes and exploration in Tasmania.
  192. Mineral Exploration and Tectonic Processes in Tasmania.
  193. Geological Society of Tasmania, Tasmanian Division, Hobart,
  194. pp. 33– 35.
  195. Gulson, B.L., Porritt, P.M., 1987. Base metal exploration of the
  196. Mount Read Volcanics, western Tasmania: lead isotope signatures
  197. and genetic implications. Economic Geology 82,
  198. 291– 307.
  199. Harris, A.C., Golding, S.D., 2002. New evidence of magmatic-fluid-
  200. related phyllic alteration: implications for the genesis of porphyry
  201. Cu deposits. Geology 30, 335–338.
  202. Heithersay, P., Walshe, J.L., 1995. Endeavour 26 North: a porphyry
  203. copper– gold deposit in the Late Ordovician shoshonitic Goonumbla
  204. Volcanic Complex, New South Wales, Australia. Economic
  205. Geology 90, 1506–1532.
  206. Huston, D.L., 1999. Stable isotopes and their significance for understanding
  207. the genesis of volcanic-hosted massive sulphide
  208. deposits: a review. Reviews in Economic Geology 8, 157– 179.
  209. Huston, D.L., Power, M., Gemmell, J.B., Large, R.R., 1995. Design,
  210. calibration and geological application of the first operational
  211. Australian laser ablation sulfur isotope microprobe.
  212. Australian Journal of Earth Sciences 42, 549– 555.
  213. Jack, D.J., 1989. Hellyer host rock alteration. Unpublished M.Sc.
  214. thesis, University of Tasmania, Hobart. 182 pp.
  215. Jago, J.B., 1979. Tasmanian Cambrian biostratigraphy—a preliminary
  216. report. Australian Journal of Earth Sciences 26, 223– 230.
  217. Jago, J.B., McNeil, A.W., 1997. A late Middle Cambrian shallowwater
  218. trilobite fauna from the Mt Read Volcanics, northwestern
  219. Tasmania. Papers and Proceedings of the Royal Society of Tasmania
  220. 131, 85– 90.
  221. Kajiwara, Y., 1971. Sulfur isotope study of the Kuroko-ores of the
  222. Shakanai no. 1 deposits, Akita Prefecture, Japan. Geochemical
  223. Journal 4, 157– 181.
  224. Kaufman, A.J., Knoll, A.H., 1995. Neoproterozoic variations in the
  225. carbon-isotopic composition of seawater: stratigraphic and biogeochemical
  226. implications. Precambrian Research 73, 27–50.
  227. Khin Zaw, Gemmell, J.B., Large, R.R., Mernagh, T.P., Ryan, C.G.,
  228. 1996. Evolution and source of ore fluids in the stringer system,
  229. Hellyer VHMS deposit, Tasmania, Australia: evidence from
  230. fluid inclusion microthermometry and geochemistry. Ore Geology
  231. Reviews 10, 251–278.
  232. Large, R.R., 1992. Australian volcanic-hosted massive sulphide
  233. deposits: features, styles, and genetic models. Economic Geology
  234. 87, 471– 510.
  235. Large, R.R., Doyle, M.G., Raymond, O.L., Cooke, D.R., Jones,
  236. A.T., Heasman, L., 1996. Evaluation of the role of Cambrian
  237. granites in the genesis of world class VHMS deposits in Tasmania.
  238. Ore Geology Reviews 10, 215– 230.
  239. Lusk, J., 1972. Examination of volcanic-exhalative and biogenic
  240. origins for sulfur in the stratiform massive sulphide deposits
  241. of New Brunswick. Economic Geology 67, 169– 183.
  242. Lydon, J.W., 1996. Characteristics of volcanogenic massive sulphide
  243. deposits: interpretation in terms of hydrothermal convection
  244. systems and magmatic hydrothermal systems. Boletin
  245. Geolo´gico y Minero 107, 215– 264.
  246. McArthur, G.J., 1996. Textural evolution of the Hellyer massive
  247. sulphide deposit. Unpublished Ph.D. thesis, University of Tasmania,
  248. Hobart. 272 pp.
  249. McArthur, G.J., Dronseika, E.V., 1990. Que River and Hellyer
  250. zinc – lead – silver deposits. Australasian Institute of Mining
  251. and Metallurgy Monograph 14, 1229– 1239.
  252. McCrea, J.M., 1950. The isotope chemistry of carbonates and a
  253. paleotemperature scale. Journal of Chemistry and Physics 18,
  254. 849–857.
  255. Meffre, S., Berry, R.F., Hall, M., 2000. Cambrian metamorphic
  256. complexes in Tasmania: tectonic implications. Australian Journal
  257. of Earth Sciences 47, 971– 985.
  258. Offler, R., Whitford, D.J., 1992. Wall – rock alteration and metamorphism
  259. of a volcanic-hosted massive sulphide deposit at Que
  260. River, Tasmania: petrology and mineralogy. Economic Geology
  261. 87, 686–705.
  262. Ohmoto, H., 1996. Formation of volcanogenic massive sulfide
  263. deposits. Ore Geology Reviews 10, 135–177.
  264. Ohmoto, H., Goldhaber, M.B., 1997. Sulfur and carbon isotopes.
  265. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore
  266. Deposits, 3rd edition Wiley, New York, pp. 517–611.
  267. Ohmoto, H., Lasaga, A.C., 1982. Kinetics of reactions between
  268. aqueous sulfates and sulphides in hydrothermal systems. Geochimica
  269. et Cosmochimica Acta 46, 1727–1745.
  270. Ohmoto, H., Drummond, S.E., Eldridge, C.S., Pisutha-Arnond, V.,
  271. Lenagh, T.C., 1983. Chemical processes of ore formation. Economic
  272. Geology Monograph 5, 570– 604.
  273. O’Neil, J.R., Clayton, R.N., Meyeda, T.K., 1969. Oxygen isotope
  274. fractionation in divalent metal carbonates. Journal of Chemistry
  275. and Physics 51, 5547–5558.
  276. Pisutha-Arnond, V., Ohmoto, H., 1983. Thermal history, and
  277. chemical and isotopic composition of the ore-forming fluids
  278. responsible for the Kuroko massive sulphide deposits in the
  279. Hokuroku district of Japan. Economic Geology Monograph 5,
  280. 523– 558.
  281. Polya, D.A., Solomon, M., Eastoe, C.J., Walshe, J.L., 1986. The
  282. Murchison Gorge, Tasmania—a possible cross-section through
  283. a massive sulphide system. Economic Geology 81, 1341– 1355.
  284. Ramsden, A.R., Kinealy, K.M., Creelman, R.A., French, D.H.,
  285. 1990. Precious and base metal mineralogy of the Hellyer volcanogenic
  286. massive sulphide deposit, N.W. Tasmania—a study by
  287. electron microprobe. In: Gray, P.M.S., Castle, J.F., Vaughan,
  288. D.J., Warner, N.A. (Eds.), Sulphide Deposits—Their Origin
  289. and Processing. Institution of Mining and Metallurgy, London,
  290. pp. 49– 71.
  291. Reid, R.O., 2001. Cambrian intrusion-related copper mineralisation
  292. at the Thomas Creek prospect, southwestern Tasmania. Unpublished
  293. Master of Economic Geology thesis, University of Tasmania,
  294. Hobart. 92 pp.
  295. Sasaki, A., 1974. Isotopic data of Kuroko deposits. Mining Geology
  296. Special Issue 6, 389– 397.
  297. Sawka, W.N., Heizler, M.T., Kistler, R.W., Chappell, B.W., 1990.
  298. Geochemistry of highly fractionated I- and S-type granites from
  299. the tin– tungsten province of western Tasmania. Geological Society
  300. of America Special Paper 246, 161–179.
  301. Schardt, C., Cooke, D.R., Gemmell, J.B., Large, R.R., 2001. Geochemical
  302. modelling of the zoned footwall alteration pipe,
  303. Hellyer VHMS deposit, western Tasmania, Australia. Economic
  304. Geology 96, 1037–1054.
  305. Sharpe, R., 1991. The Hellyer baritic and siliceous caps. Unpublished
  306. Honours B.Sc. thesis, University of Tasmania, Hobart.
  307. 114 pp.
  308. Sheppard, S.M.F., Schwarcz, H.P., 1970. Fractionation of carbon
  309. and oxygen isotopes and magnesium between coexisting metamorphic
  310. calcite and dolomite. Contributions to Mineralogy and
  311. Petrology 26, 161– 198.
  312. Solomon, M., 1999. Discussion: sulphur isotope composition of the
  313. Brunswick no. 12 massive sulphide deposit, Bathurst mining
  314. camp, New Brunswick: implications for ambient environment,
  315. sulphur source, and ore genesis. Canadian Journal of Earth Sciences
  316. 36, 1 – 5.
  317. Solomon, M., Gaspar, O.C., 2001. Textures of the Hellyer volcanichosted
  318. massive sulphide deposit, Tasmania—the ageing of a
  319. sulphide sediment on the sea floor. Economic Geology 96,
  320. 1513– 1534.
  321. Solomon, M., Groves, D.I., 2000. The geology and origin of Australia’s
  322. mineral deposits. Centres of Ore Deposit Research and
  323. Global Metallogeny, Hobart and Perth. 1002 pp.
  324. Solomon, M., Khin Zaw, M., 1997. Formation of the Hellyer volcanogenic
  325. massive sulphide deposit on the sea floor. Economic
  326. Geology 92, 686–695.
  327. Solomon, M., Yang, J., 2000. Explaining variation in VHMS ores
  328. (e.g., Hokuroku, Hellyer, and Mt. Lyell): the likely role of fractures,
  329. deep footwall permeability, and rock buffering capacity.
  330. Geological Society of Australia Abstracts 59, 466.
  331. Solomon, M., Quesada, C., 2003. Zn –Pb –Cu massive sulphide
  332. deposits: brine pool types occur in collisional orogens, black
  333. smoker types in backarc and/or arc basins. Geology 31,
  334. 1029–1032.
  335. Solomon, M., Eastoe, C.J., Walshe, J.L., Green, G.R., 1988. Mineral
  336. deposits and sulfur isotope abundances in the Mount Read
  337. Volcanics between Que River and Mount Darwin, Tasmania.
  338. Economic Geology 83, 1307– 1328.
  339. Solomon, M., Tornos, F., Gaspar, O.C., 2002. Explanation for many
  340. of the unusual features of the massive sulfide deposits of the
  341. Iberian pyrite belt. Geology 30, 87–90.
  342. Stanton, R.L., Rafter, T.A., 1966. The isotopic constitution of sulphur
  343. in some stratiform lead–zinc ores. Mineralium Deposita 1,
  344. 16– 29.
  345. Turner, N.J., 1989. Precambrian. Geological Society of Australia
  346. Special Publication 15, 5 –46.
  347. Vanko, D.A., Bonnin-Mosbah, M., Philippot, P., Roedder, E.,
  348. Sutton, S.R., 2001. Fluid inclusions in quartz from oceanic
  349. hydrothermal specimens and the Bingham, Utah, porphyry-Cu
  350. deposit: a case study with PIXE and SXRF. Chemical Geology
  351. 171, 227– 238.
  352. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F.,
  353. Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T.,
  354. Korte, K., Pawellek, F., Podlaha, O.G., Strauss, H., 1999.
  355. 87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater.
  356. Chemical Geology 161, 59– 88.
  357. Von Damm, K.L., 1995. Controls on the chemistry and temporal
  358. variability of seafloor hydrothermal fluids. Geophysical Monograph
  359. 91, 222–247.
  360. Waters, J.C., Wallace, D.B., 1992. Volcanology and sedimentology
  361. of the host succession to the Hellyer and Que River volcanichosted
  362. massive sulphide deposits, northwestern Tasmania. Economic
  363. Geology 87, 650–666.
  364. Whitford, D.J., Sun, S.-S., Togashi, Y., 1982. Petrological and geochemical
  365. studies at Que River, Part 3. CSIRO Restricted Investigation
  366. Report 1332R (34 pp.).
  367. Whitford, D.J., Korsch, M.J., Solomon, M., 1992. Strontium
  368. isotope studies of barites: implications for the origin of base
  369. metal mineralization in Tasmania. Economic Geology 87,
  370. 953– 959.
  371. Whitford, D.J., Sharpe, R., Gemmell, J.B., 1993. Origin of barite
  372. from the Hellyer VHMS deposit, Tasmania: a Sr isotopic study.
  373. Geological Society of Australia Abstracts Series 24, 75.
  374. Wyman, W.F., 2001. Cambrian granite-related hydrothermal alteration
  375. and Cu–Au mineralisation in the southern Mt Read Volcanics,
  376. western Tasmania. Unpublished Ph.D. thesis, University
  377. of Tasmania, Hobart. 343 pp.
  378. Yang, J., Large, R.R., 2001. Computational modelling of hydrothermal
  379. ore-forming fluid migration in complex earth structures.
  380. In: Xie, H., Wang, Y., Jiang, Y., (Eds.), Computer
  381. Applications in the Mineral Industries. Swets and Zeitlinger,
  382. Lisse, pp. 115– 120.
  383. Zheng, Y.-F., Hoefs, J., 1993. Carbon and oxygen isotopic covariation
  384. in hydrothermal calcites. Theoretical modeling on mixing
  385. processes and application to Pb–Zn deposits in the Harz Mountains,
  386. Germany. Mineralium Deposita 28, 79–89." name="eprints.referencetext" />
  387. <meta content="Solomon, M. and Gemmell, J.B. and Zaw, K. (2004) Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes. Ore Geology Reviews, 25 (1-2). pp. 89-124. ISSN 0169-1368" name="eprints.citation" />
  388. <meta content="http://eprints.utas.edu.au/2051/1/Solomon.Gemmell.Zaw.OGR.2004.pdf" name="eprints.document_url" />
  389. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  390. <meta content="Nature and origin of the fluids responsible for forming the Hellyer
  391. Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes " name="DC.title" />
  392. <meta content="Solomon, M." name="DC.creator" />
  393. <meta content="Gemmell, J.B." name="DC.creator" />
  394. <meta content="Zaw, K." name="DC.creator" />
  395. <meta content="260100 Geology" name="DC.subject" />
  396. <meta content="The Hellyer massive sulphide deposit lies within the Mount Read Volcanics province of western Tasmania. Before mining, it consisted largely of pyrite, sphalerite, galena, arsenopyrite and chalcopyrite, and was overlain by discontinuous barite–sulphide and/or silica–sulphide assemblages. It overlay a downward-tapering cone of hydrothermally altered rocks that shows concentric
  397. mineral zonation and contains steeply inclined veins containing sulphide and/or barite. New laser ablation and existing conventional sulphur isotopic compositions of sulphides from the massive sulphide ore range from -5.0 per mil to 12.2 per mil. There is no significant spatial variation in sulphur isotopic composition in the sulphide ore, or evidence of significant change in the
  398. textural paragenesis, but there is considerable variation at millimetre scale within and between minerals. Apart from the few negative values, which may be of biogenic origin, the sulphur data can be explained by mixtures of sulphur reduced from seawater sulphate and that derived directly or indirectly from magma. The sulphur of the barite cap and the barite veins in the footwall (mostly 33.5–46.0 per mil) is probably also derived from seawater sulphate, and radiogenic 87Sr/86Sr values in the barite (0.70989–0.71144) suggest fluid circulation deep into the basement. delta 34 S values of disseminated sulphides in the footwall
  399. alteration cone are like those of overlying ore, the aqueous sulphur being totally reduced due to low fluid velocities and protracted rock interaction. However, unusually high delta 34 S sulphide values (up to 41.4 per mil) are found in some of the footwall vein sulphides, probably because in these veins the fluid velocities are enhanced and rock interaction limited, so that pyrite
  400. supersaturation may occur before reduction of entrained seawater sulphate is complete. High delta 34 S sulphide values (up to 45.6 per mil) also occur in ‘‘unaltered’’ volcanic rock outside the alteration cone and may be the product of local convection of seawater prior
  401. to, during, or (most probably) after massive sulphide mineralization. Fluid delta 18 O values calculated from isotopic analyses of quartz in footwall veins (8.5–11.8 per mil) and Th data range between 4.4 per mil and 3.1 per mil. Dolomite occurs with chlorite in the core of the footwall alteration cone immediately below the massive
  402. sulphide. Its isotopic composition (delta 13 C=1.5 to 2.8, delta 18 O=8.2–18.3 per mil) may reflect precipitation from an acid, seawaterderived, fluid having delta 13 C=1 per mil(the ambient seawater value), and delta 18 O ranging from 0 per mil to 6 per mil, or, alternatively, its
  403. composition is the result of mixing between modified seawater at 150 degrees C (delta 18 O=6 per mil) with 1% of fluid at 350 degrees C having delta 13 C= -6 and delta 18 O=0 per mil. Dolomites in the footwall veins (delta 13 C= -1.8 to 1.7, delta 18 O= 9.3–14.2 per mil) could be derived from an acid, seawater-derived fluid with negative delta 18 O values, or a fluid that has interacted with 600–700 Ma old, 13 C-enriched carbonates in the deep footwall during convective circulation. Both the chlorite-associated and the vein carbonates contain highly radiogenic Sr, possibly derived from Devonian metamorphic fluids.
  404. A re-interpretation of the fluid inclusion data of Khin Zaw et al. [Ore Geol. Rev. 10 (1996) 251] shows that there are three groups of fluids in the quartz of veins in the altered footwall, viz. (a) saline (6.6–14.8 wt.%) with Th = 170–246 degrees C, high K/Na, K/Ca and K/Fe values (fluid 1); (b) of similar salinity and temperature but with low K/Na, K/Ca and K/Fe values (fluid 2); and
  405. (c) an additional fluid of low salinity (2.9–7.0 wt.%) with Th = 289–322 degrees C, element ratios unknown (fluid 3). Fluid 1 has cation ratios like those of magmatic fluids in the K-silicate and phyllosilicate zones of the Panguna and Endeavour 26N porphyry copper deposits. Combined with the lack of alternative source of salts in the pre-ore rock sequences at Hellyer, fluid 1 is thought to be at least partly magmatic. Fluid 2 has cation ratios like those of modern black smoker and Kuroko ore-forming
  406. fluids, and was probably derived from both magmatic fluid and seawater; fluid 3 may be evolved seawater like that forming the deposits of the Hokuroku Basin.
  407. It is suggested that a pluton or plutonic complex of mixed crustal and lithospheric mantle parentage, like that of the volcanic rocks hosting the Hellyer orebody, was emplaced at several km depth below the deposit during faulting related to crustal extension. The heated zone over and around the pluton displaying plastic behaviour was sealed off from the overlying brittle zone in which groundwater (modified seawater) underwent convection due to heat transfer across the brittle-plastic boundary.
  408. The seal was broken intermittently due to tectonic extension or increased fluid pressure in the pluton, and magmatic fluid joined with convecting groundwater in the rising plume, leading to fluid mixing. Upward flow was focused on the Eastern Fault, the fracture system responsible for forming the basin in which the ore sulphides were sedimented." name="DC.description" />
  409. <meta content="2004-08" name="DC.date" />
  410. <meta content="Article" name="DC.type" />
  411. <meta content="PeerReviewed" name="DC.type" />
  412. <meta content="application/pdf" name="DC.format" />
  413. <meta content="http://eprints.utas.edu.au/2051/1/Solomon.Gemmell.Zaw.OGR.2004.pdf" name="DC.identifier" />
  414. <meta content="http://dx.doi.org/10.1016/j.oregeorev.2003.11.001" name="DC.relation" />
  415. <meta content="Solomon, M. and Gemmell, J.B. and Zaw, K. (2004) Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes. Ore Geology Reviews, 25 (1-2). pp. 89-124. ISSN 0169-1368" name="DC.identifier" />
  416. <meta content="http://eprints.utas.edu.au/2051/" name="DC.relation" />
  417. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/BibTeX/epprod-eprint-2051.bib" title="BibTeX" type="text/plain" />
  418. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/ContextObject/epprod-eprint-2051.xml" title="OpenURL ContextObject" type="text/xml" />
  419. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/ContextObject::Dissertation/epprod-eprint-2051.xml" title="OpenURL Dissertation" type="text/xml" />
  420. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/ContextObject::Journal/epprod-eprint-2051.xml" title="OpenURL Journal" type="text/xml" />
  421. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/DC/epprod-eprint-2051.txt" title="Dublin Core" type="text/plain" />
  422. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/DIDL/epprod-eprint-2051.xml" title="DIDL" type="text/xml" />
  423. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/EndNote/epprod-eprint-2051.enw" title="EndNote" type="text/plain" />
  424. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/HTML/epprod-eprint-2051.html" title="HTML Citation" type="text/html; charset=utf-8" />
  425. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/METS/epprod-eprint-2051.xml" title="METS" type="text/xml" />
  426. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/MODS/epprod-eprint-2051.xml" title="MODS" type="text/xml" />
  427. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/RIS/epprod-eprint-2051.ris" title="Reference Manager" type="text/plain" />
  428. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/Refer/epprod-eprint-2051.refer" title="Refer" type="text/plain" />
  429. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/Simple/epprod-eprint-2051text" title="Simple Metadata" type="text/plain" />
  430. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/Text/epprod-eprint-2051.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  431. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2051/XML/epprod-eprint-2051.xml" title="EP3 XML" type="text/xml" />
  432.  
  433. </head>
  434. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  435. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  436.  
  437.  
  438.  
  439.  
  440. <table width="795" border="0" cellspacing="0" cellpadding="0">
  441. <tr>
  442. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  443. <table border="0" cellpadding="0" cellspacing="0" width="795">
  444. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  445. <tr>
  446. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  447. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  448. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  449. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  450. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  451. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  452. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  453. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  454. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  455. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  456. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  457. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  458. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  459. </tr>
  460. <tr>
  461. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  462. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  463. </tr>
  464. <tr>
  465. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  466. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  467. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  468. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  469. </tr>
  470. <tr>
  471. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  472. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  473. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  474. </tr>
  475. <tr>
  476. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  477. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  478. </tr>
  479. <tr>
  480. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  481. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  482. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  483. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  484. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  485. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  486. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  487. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  488. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  489. </tr>
  490. <tr>
  491. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  492. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  493. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  494. </tr>
  495. <tr>
  496. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  497. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  498. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  499. </tr>
  500. </table></td>
  501. </tr>
  502. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  503. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  504. <td align="right" style="white-space: nowrap">
  505. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  506. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  507. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  508. <input type="hidden" name="_order" value="bytitle" />
  509. <input type="hidden" name="basic_srchtype" value="ALL" />
  510. <input type="hidden" name="_satisfyall" value="ALL" />
  511. </form>
  512. </td>
  513. </tr></table></td></tr>
  514. <tr>
  515. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  516.  
  517.  
  518. <div align="center">
  519. <table width="720" class="ep_tm_main"><tr><td align="left">
  520. <h1 class="ep_tm_pagetitle">Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes</h1>
  521. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Solomon, M.</span> and <span class="person_name">Gemmell, J.B.</span> and <span class="person_name">Zaw, K.</span> (2004) <xhtml:em>Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes.</xhtml:em> Ore Geology Reviews, 25 (1-2). pp. 89-124. ISSN 0169-1368</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2051/1/Solomon.Gemmell.Zaw.OGR.2004.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2051/1/Solomon.Gemmell.Zaw.OGR.2004.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />2769Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2588" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1016/j.oregeorev.2003.11.001">http://dx.doi.org/10.1016/j.oregeorev.2003.11.001</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">The Hellyer massive sulphide deposit lies within the Mount Read Volcanics province of western Tasmania. Before mining, it consisted largely of pyrite, sphalerite, galena, arsenopyrite and chalcopyrite, and was overlain by discontinuous barite–sulphide and/or silica–sulphide assemblages. It overlay a downward-tapering cone of hydrothermally altered rocks that shows concentric&#13;
  522. mineral zonation and contains steeply inclined veins containing sulphide and/or barite. New laser ablation and existing conventional sulphur isotopic compositions of sulphides from the massive sulphide ore range from -5.0 per mil to 12.2 per mil. There is no significant spatial variation in sulphur isotopic composition in the sulphide ore, or evidence of significant change in the&#13;
  523. textural paragenesis, but there is considerable variation at millimetre scale within and between minerals. Apart from the few negative values, which may be of biogenic origin, the sulphur data can be explained by mixtures of sulphur reduced from seawater sulphate and that derived directly or indirectly from magma. The sulphur of the barite cap and the barite veins in the footwall (mostly 33.5–46.0 per mil) is probably also derived from seawater sulphate, and radiogenic 87Sr/86Sr values in the barite (0.70989–0.71144) suggest fluid circulation deep into the basement. delta 34 S values of disseminated sulphides in the footwall&#13;
  524. alteration cone are like those of overlying ore, the aqueous sulphur being totally reduced due to low fluid velocities and protracted rock interaction. However, unusually high delta 34 S sulphide values (up to 41.4 per mil) are found in some of the footwall vein sulphides, probably because in these veins the fluid velocities are enhanced and rock interaction limited, so that pyrite&#13;
  525. supersaturation may occur before reduction of entrained seawater sulphate is complete. High delta 34 S sulphide values (up to 45.6 per mil) also occur in ‘‘unaltered’’ volcanic rock outside the alteration cone and may be the product of local convection of seawater prior&#13;
  526. to, during, or (most probably) after massive sulphide mineralization. Fluid delta 18 O values calculated from isotopic analyses of quartz in footwall veins (8.5–11.8 per mil) and Th data range between 4.4 per mil and 3.1 per mil. Dolomite occurs with chlorite in the core of the footwall alteration cone immediately below the massive&#13;
  527. sulphide. Its isotopic composition (delta 13 C=1.5 to 2.8, delta 18 O=8.2–18.3 per mil) may reflect precipitation from an acid, seawaterderived, fluid having delta 13 C=1 per mil(the ambient seawater value), and delta 18 O ranging from 0 per mil to 6 per mil, or, alternatively, its&#13;
  528. composition is the result of mixing between modified seawater at 150 degrees C (delta 18 O=6 per mil) with 1% of fluid at 350 degrees C having delta 13 C= -6 and delta 18 O=0 per mil. Dolomites in the footwall veins (delta 13 C= -1.8 to 1.7, delta 18 O= 9.3–14.2 per mil) could be derived from an acid, seawater-derived fluid with negative delta 18 O values, or a fluid that has interacted with 600–700 Ma old, 13 C-enriched carbonates in the deep footwall during convective circulation. Both the chlorite-associated and the vein carbonates contain highly radiogenic Sr, possibly derived from Devonian metamorphic fluids.&#13;
  529. A re-interpretation of the fluid inclusion data of Khin Zaw et al. [Ore Geol. Rev. 10 (1996) 251] shows that there are three groups of fluids in the quartz of veins in the altered footwall, viz. (a) saline (6.6–14.8 wt.%) with Th = 170–246 degrees C, high K/Na, K/Ca and K/Fe values (fluid 1); (b) of similar salinity and temperature but with low K/Na, K/Ca and K/Fe values (fluid 2); and&#13;
  530. (c) an additional fluid of low salinity (2.9–7.0 wt.%) with Th = 289–322 degrees C, element ratios unknown (fluid 3). Fluid 1 has cation ratios like those of magmatic fluids in the K-silicate and phyllosilicate zones of the Panguna and Endeavour 26N porphyry copper deposits. Combined with the lack of alternative source of salts in the pre-ore rock sequences at Hellyer, fluid 1 is thought to be at least partly magmatic. Fluid 2 has cation ratios like those of modern black smoker and Kuroko ore-forming&#13;
  531. fluids, and was probably derived from both magmatic fluid and seawater; fluid 3 may be evolved seawater like that forming the deposits of the Hokuroku Basin.&#13;
  532. It is suggested that a pluton or plutonic complex of mixed crustal and lithospheric mantle parentage, like that of the volcanic rocks hosting the Hellyer orebody, was emplaced at several km depth below the deposit during faulting related to crustal extension. The heated zone over and around the pluton displaying plastic behaviour was sealed off from the overlying brittle zone in which groundwater (modified seawater) underwent convection due to heat transfer across the brittle-plastic boundary.&#13;
  533. The seal was broken intermittently due to tectonic extension or increased fluid pressure in the pluton, and magmatic fluid joined with convecting groundwater in the rising plume, leading to fluid mixing. Upward flow was focused on the Eastern Fault, the fracture system responsible for forming the basin in which the ore sulphides were sedimented.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">Definitive version is available online at http://www.sciencedirect.com/</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Hellyer; Tasmania; Australia; Massive sulphide deposit; Stable isotopes</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2051</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">10 Oct 2007 03:44</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2051;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2051">item control page</a></p>
  534. </td></tr></table>
  535. </div>
  536.  
  537.  
  538.  
  539. <!-- InstanceEndEditable --></td>
  540. </tr>
  541. <tr>
  542. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  543. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  544. <tr valign="top">
  545. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  546. </tr>
  547. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  548. <tr valign="top">
  549. <td width="68%" class="footer">Authorised by the University Librarian<br />
  550. © University of Tasmania ABN 30 764 374 782<br />
  551. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  552. <td width="32%"><div align="right">
  553. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  554. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  555. </a></p>
  556. </div></td>
  557. </tr>
  558. <tr valign="top">
  559. <td><p>  </p></td>
  560. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  561. </tr>
  562. </table>
  563. <!-- #EndLibraryItem -->
  564. <div align="center"></div></td>
  565. </tr>
  566. </table>
  567.  
  568. </body>
  569. </html>