<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head> <title>UTas ePrints - Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies</title> <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script> <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style> <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style> <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="Top" href="http://eprints.utas.edu.au/" /> <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" /> <meta content="Arndt, Carolin E." name="eprints.creators_name" /> <meta content="Swadling, Kerrie M." name="eprints.creators_name" /> <meta content="" name="eprints.creators_id" /> <meta content="k.swadling@utas.edu.au" name="eprints.creators_id" /> <meta content="Southward, A.J." name="eprints.editors_name" /> <meta content="Sims, D.W." name="eprints.editors_name" /> <meta content="book_section" name="eprints.type" /> <meta content="2007-10-18 03:00:28" name="eprints.datestamp" /> <meta content="2008-01-08 15:30:00" name="eprints.lastmod" /> <meta content="show" name="eprints.metadata_visibility" /> <meta content="Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies" name="eprints.title" /> <meta content="pub" name="eprints.ispublished" /> <meta content="270702" name="eprints.subjects" /> <meta content="restricted" name="eprints.full_text_status" /> <meta content="The definitive version is available online at http://www.sciencedirect.com/" name="eprints.note" /> <meta content="This review concerns crustaceans that associate with sea ice. Particular emphasis is placed on comparing and contrasting the Arctic and Antarctic sea ice habitats, and the subsequent influence of these environments on the life history strategies of the crustacean fauna. Sea ice is the dominant feature of both polar marine ecosystems, playing a central role in physical processes and providing an essential habitat for organisms ranging in size from viruses to whales. Similarities between the Arctic and Antarctic marine ecosystems include variable cover of sea ice over an annual cycle, a light regimen that can extend from months of total darkness to months of continuous light and a pronounced seasonality in primary production. Although there are many similarities, there are also major diVerences between the two regions: The Antarctic experiences greater seasonal change in its sea ice extent, much of the ice is over very deep water and more than 80% breaks out each year. In contrast, Arctic sea ice often covers comparatively shallow water, doubles in its extent on an annual cycle and the ice may persist for several decades. Crustaceans, particularly copepods and amphipods, are abundant in the sea ice zone at both poles, either living within the brine channel system of the ice-crystal matrix or inhabiting the ice–water interface. Many species associate with ice for only a part of their life cycle, while others appear entirely dependent upon it for reproduction and development. Although similarities exist between the two faunas, many diVerences are emerging. Most notable are the much higher abundance and biomass of Antarctic copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids, the high euphausiid biomass in Southern Ocean waters and the lack of any species that appear fully dependent on the ice. In the Arctic, the ice-associated fauna is dominated by amphipods. Calanoid copepods are not tightly associated with the ice, while harpacticoids and cyclopoids are abundant. Euphausiids are nearly absent from the high Arctic. Life history strategies are variable, although reproductive cycles and life spans are generally longer than those for temperate congeners. Species at both poles tend to be opportunistic feeders and periods of diapause or other reductions in metabolic expenditure are not uncommon." name="eprints.abstract" /> <meta content="2006" name="eprints.date" /> <meta content="published" name="eprints.date_type" /> <meta content="51" name="eprints.volume" /> <meta content="Elsevier" name="eprints.publisher" /> <meta content="197-315" name="eprints.pagerange" /> <meta content="10.1016/S0065-2881(06)51004-1" name="eprints.id_number" /> <meta content="TRUE" name="eprints.refereed" /> <meta content="Advances in Marine Biology" name="eprints.book_title" /> <meta content="http://dx.doi.org/10.1016/S0065-2881(06)51004-1" name="eprints.official_url" /> <meta content="Aarset, A. V. (1987). AMERIEZ 1986: Under-ice fauna from the Weddell Sea— responses to low temperature and osmotic stress. Antarctic Journal of the United States 22, 170–171. Aarset, A. V. (1991). The ecophysiology of under-ice fauna. Polar Research 10, 309–324. Aarset, A. V. and Aunaas, T. (1987). Osmotic responses to hyposmotic stress in the amphipods Gammarus wilkitzkii, Onisimus glacialis and Parathemisto libellula from Arctic waters. Polar Biology 7, 189–193. Aarset, A. V. and Aunaas, T. (1990). Metabolic responses of the sympagic amphipods Gammarus wilkitzkii and Onisimus glacialis to acute temperature variations. Marine Biology 107, 433–438. SEA ICE CRUSTACEA 295 Aarset, A. V. and Torres, J. J. (1989). Cold resistance and metabolic responses to salinity variations in the amphipod Eusirus antarcticus and the krill Euphausia superba. Polar Biology 9, 491–497. Aarset, A. V. and Zachariassen, K. E. (1988). Low temperature tolerance and osmotic regulation of the amphipod Gammarus oceanicus from Spitsbergen waters. Polar Research 6, 35–41. Abu-Rezq, T. W., Yule, A. B. and Teng, S. K. (1997). Ingestion, fecundity, growth rates and culture of the harpacticoid copepod, Tisbe furcata, in the laboratory. Hydrobiologia 347, 109–118. Ackley, S. F. and Sullivan, C. W. (1994). Physical controls on the development and characteristics of Antarctic sea ice biological communities—a review and synthesis. Deep-Sea Research I 41, 1583–1604. Albers, C. S., Kattner, G. and Hagen, W. (1996). The composition of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: Evidence of energetic adaptations. Marine Chemistry 55, 347–358. Andriashev, A. P. (1968). The problem of the life community associated with the Antarctic fast ice. In ‘‘Symposium on Antarctic Oceanography’’ (R. I. Currie, ed.), pp. 147–155. W HeVer & Son, Cambridge. Arndt, C. E. (2002). Feeding ecology of the Arctic ice-amphipod Gammarus wilkitzkii—physiological, morphological and ecological studies. Reports on Polar and Marine Research 405, 1–74. Arndt, C. E. (2004). Ecosystem dynamics in arctic sea ice: The impact of physical and biological processes on the occurrence and distribution of sympagic amphipods. Ph.D. Thesis, University Centre on Svalbard, Norway. Arndt, C. E. and Beuchel, F. (2006). Life cycle and population dynamics of the Arctic sympagic amphipods Onisimus nanseni SARS and O. glacialis SARS (Grammaridea: Lysianassidae). Polar Biology 29, 239–248. Arndt, C. E. and Pavlova, O. (2005). Origin and fate of ice fauna in the Fram Strait and Svalbard area. Marine Ecology Progress Series 301, 55–66. Arndt, C. E., Kanapathippillai, P., Kluge, R. and Krapp, R. (2000). Abundance of sympagic amphipods north of Svalbard considering the ice conditions. In ‘‘Report of AB-310 Course at UNIS 2000’’ (O. J. Lnne, ed.), pp. 1–23. Longyearbyen. Available at www.unis.no. Arndt, C. E., Fernandez-Leborans, G., Seuthe, L., Berge, J. and Gulliksen, B. (2005a). Ciliated epibionts on the Arctic sympagic amphipod Gammarus wilkitzkii benthic coupling. Marine Biology 147, 643–652. Arndt, C. E., Berge, J. and Brandt, A. (2005b). Mouthpart-atlas of Arctic sympagic amphipods—trophic niche separation based on mouthpart morphology and feeding ecology. Journal of Crustacean Biology 25, 401–412. Arrigo, K. R. (2003). Primary production in sea ice. In ‘‘Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Ecology’’ (D. N. Thomas and G. S. Dieckmann, eds), pp. 143–183. Blackwell Publishing, Oxford. Atkinson, A. (1998). Life cycle strategies of epipelagic copepods in the Southern Ocean. Journal of Marine Systems 15, 289–311. Atkinson, A. and Sny¨der, R. (1997). Krill-copepod interactions at South Georgia, Antarctica, I. Omnivory by Euphausia superba. Marine Ecology Progress Series 160, 63–76. Atkinson, A., Meyer, B., Stu¨bing, D., Hagen, W., Schmidt, K. and Bathmann, U. V. (2002). Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter—II. Juveniles and adults. Limnology and Oceanography 47, 953–966. 296 CAROLIN E. ARNDT AND KERRIE M. SWADLING Atkinson, A., Siegel, V., Pakhomov, E. and Rothery, P. (2004). Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103. Auel, H. and Werner, I. (2003). Feeding, respiration and life history of the hyperiid amphipod Themisto libellula in the Arctic marginal ice zone of the Greenland Sea. Journal of Experimental Marine Biology and Ecology 296, 183–197. Auel, H., Harjes, M., da Rocha, R., Stu¨bing, D. and Hagen, W. (2002). Lipid biomarkers indicate diVerent ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biology 25, 374–383. Auel, H., Klages, M. and Werner, I. (2003). Respiration and lipid content of the Arctic copepod Calanus hyperboreus overwintering 1 m above seafloor at 2300 m water depth in the Fram Strait. Polar Biology 143, 275–282. Averintzev, V. G. (1993). Cryopelagic life at Franz Josef Land. In ‘‘Environment and Ecosystems of the Frans Josef Land (Archipelago and Shelf)’’ pp. 171–186. Apatity, Kola Scientific Center, Russian Academy of Science. Barnard, J. L. (1959). Epipelagic and under-ice Amphipoda of the central Arctic Basin. Scientific Studies at Fletcher’s Ice Island T-3, 1952–1955. Geophysical Research Paper 63, 115–153. Bates, S. S. (2004). Amnesic shellfish poisoning: Domoic acid production by Pseudonitzschia diatoms. Aqua Info Aquaculture Notes 16, 1–4. Bathmann, U. V., Makarov, R. R., Spiridonov, V. A. and Rohardt, G. (1993). Winter distribution and overwintering strategies of the Antarctic copepod species Calanoides acutus, Rhincalanus gigas and Calanus propinquus (Crustacea, Calanoida) in the Weddell Sea. Polar Biology 13, 333–346. Bayly, I. A. E. (1978). The occurrence of Paralabidocera antarctica (I. C. Thompson) (Copepoda: Calanoida: Acartiidae) in an Antarctic saline lake. Australian Journal of Marine and Freshwater Research 29, 817–824. Bergmans, M., Dahms, H.-U. and Schminke, H. K. (1991). An r-strategist in Antarctic pack ice. Oecologia 86, 305–309. Beuchel, F. and Lnne, O. J. (2002). Population dynamics of the sympagic amphipods Gammarus wilkitzkii and Apherusa glacialis in sea ice north of Svalbard. Polar Biology 25, 241–250. Beuchel, F., Borga° , K., Karlsson, S. and Lillekdal, G. (1998). Distribution of the sympagic fauna at three diVerent locations north of Svalbard. In ‘‘Report of AB-310 course at UNIS 1998’’ (O. J. Lnne, ed.), pp. 1–31. Longyearbyen. Available at www.unis.no. Birula, A. A. (1937). Beitra¨ge zur Kenntnis der Crustaceen-Fauna des Kara-Busens und des Unterlaufes des Flusses Kara. Travaux de l’Institute Zoologique de l’Acade ´mie des Sciences de l’URSS 4, 701–747. Blome, D. and Riemann, F. (1999). Antarctic sea ice nematodes, with description of Geomonhystera glaciei sp. nov. (Monhysteridae). Mitteilung des Hamburgischen Zoologischen Museum Instituts 96, 15–20. Boysen-Ennen, E. and Piatkowski, U. (1988). Meso- and macrozooplankton communities in the Weddell Sea, Antarctica. Polar Biology 9, 17–35. Boysen-Ennen, E., Hagen, W., Hubold, G. and Piatkowski, U. (1991). Zooplankton biomass in the ice-covered Weddell Sea, Antarctica. Marine Biology 111, 227–235. Bradford, J. M. (1978). Sea ice organisms and their importance to the Antarctic ecosystem (Review). Antarctic Record 1, 43–50. Bradstreet, M. S. W. (1982). Occurrence, habitat use, and behavior of seabirds, marine mammals, and arctic cod at the Pond Inlet ice edge. Arctic 35, 28–40. SEA ICE CRUSTACEA 297 Bradstreet, M. S. W. and Cross, W. E. (1982). Trophic relationships at high Arctic ice edges. Arctic 35, 1–12. Brierley, A. S. and Thomas, D. N. (2002). Ecology of Southern Ocean pack ice. Advances in Marine Biology 43, 171–277. Brierley, A. S., Demer, D. A., Watkins, J. L. and Hewitt, R. P. (1999). Concordance of interannual fluctuations in acoustically estimated densities of Antarctic krill around South Georgia and Elephant Island: Biological evidence of same-year teleconnections across the Scotia Sea. Marine Biology 134, 675–681. Brierley, A. S., Fernandez, P. G., Brandon, M. A., Armstrong, F., Millard, N. W., McPhail, S. D., Stevenson, P., Pebody, M., Perrett, J., Squires, M., Bone, D. G. and GriYths, G. (2002). Antarctic krill under sea ice: Elevated abundance in a narrow band just south of ice edge. Science 295, 1890–1892. Brinton, E. and Townsend, A. W. (1991). Development rates and habitat shifts in the Antarctic neritic euphausiid Euphausia crystallorophias, 1986–87. Deep Sea Research 38, 1195–1211. Brodsky, K. A. and Zvereva, J. A. (1976). Paralabidocera separabilis sp. n. and P. antarctica (J. C. Thompson) (Copepoda, Calanoida) from Antarctica. Crustaceana 31, 233–240. Budd, W. F. and Wu, X. (1998). Modelling long term global and Antarctic changes resulting from increased greenhouse gases. In ‘‘Coupled Climate Modelling’’ (P. J. Meighen, ed.), Bureau of Meteorology, Canberra. Australia, Research Report 69, 71–74. Bunt, J. S. (1963). Diatoms of Antarctic sea ice as agents of primary production. Nature 199, 1255–1257. Bunt, J. S. and Wood, E. J. F. (1963). Microalgae and Antarctic sea-ice. Nature 199, 1254–1255. Burghart, S. E., Hopkins, T. L., Vargo, G. A. and Torres, J. J. (1999). EVects of a rapidly receding ice edge on the abundance, age structure and feeding of three dominant calanoid copepods in the Weddell Sea, Antarctica. Polar Biology 22, 279–288. Cairns, A. A. (1967). The zooplankton of Tanquary Fjord, Ellesmere Island, with special reference to the calanoid copepods. Journal of the Fisheries Research Board of Canada 24, 555–568. Carey, A. G., Jr. (1985). Marine ice fauna: Arctic. In ‘‘Sea Ice Biota’’ (R. A. Horner, ed.), pp. 173–190. CRC Press, Florida. Carey, A. G., Jr. (1992). The ice fauna in the shallow southwestern Beaufort Sea, Arctic Ocean. Journal of Marine Systems 3, 225–236. Carey, A. G., Jr. and Montagna, P. A. (1982). Arctic sea ice faunal assemblage: First approach to description and source of the underice meiofauna. Marine Ecology Progress Series 8, 1–8. Comiso, J. C. (2002). A rapidly declining perennial sea ice cover in the Arctic. Geophysical Research Letters 29, 17.1–17.4. Comiso, J. C. (2003). Large-scale characteristics and variability of the global sea ice cover. In ‘‘Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Ecology’’ (D. N. Thomas and G. S. Dieckmann, eds), pp. 112–142. Blackwell Publishing, Oxford. Conover, R. J. and Huntley, M. (1991). Copepods in ice-covered seas—distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas. Journal of Marine Systems 2, 1–41. Conover, R. J. and Siferd, T. D. (1993). Dark-season survival strategies of coastal zone zooplankton in the Canadian Arctic. Arctic 4, 303–311. 298 CAROLIN E. ARNDT AND KERRIE M. SWADLING Conover, R. J., Herman, A. W., Preusenberg, S. S. and Harris, L. R. (1986). Distribution of and feeding by the copepod Pseudocalanus under fast ice during the arctic spring. Science 232, 1245–1247. Conover, R. J., Bedo, A. W., Hermann, A. W., Head, E. J. H., Harris, L. R. and Horne, E. P. W. (1988). Never trust a copepod—some observations on their behaviour in the Canadian Arctic. Bulletin of Marine Science 43, 650–662. Conover, R. J., Harris, L. R. and Bedo, A. W. (1991). Copepods in cold oligotrophic waters—how do they cope? Bulletin of the Plankton Society of Japan 38, 177–199. Corkett, C. J. and McLaren, I. A. (1978). The biology of Pseudocalanus. Advances in Marine Biology 15, 1–231. Costanzo, G., Zagami, G., Crescenti, N. and Granata, A. I. (2002). Naupliar development of Stephos longipes (Copepoda: Calanoida) from the annual sea ice of Terra Nova Bay, Antarctica. Journal of Crustacean Biology 22, 855–860. Cota, G., Legendre, L., Gosselin, M. and Ingram, R. G. (1991). Ecology of bottom ice algae: I. Environmental controls and variability. Journal of Marine Systems 2, 257–278. Cross, W. E. (1982). Under-ice biota at the Pond Inlet ice edge and in adjacent fast ice areas during spring. Arctic 35, 13–27. Dahms, H.-U. and Schminke, H. K. (1992). Sea ice inhabiting Harpacticoida (Crustacea, Copepoda) of the Weddell Sea (Antarctica). Bulletin de l’Institute Royal des Sciences naturelles de Belgique 62, 91–123. Dahms, H.-U. and Quian, P.-Y. (2004). Life histories of the Harpacticoida (Copepoda, Crustacea): A comparison with meiofauna and macrofauna. Journal of Natural History 38, 1725–1734. Dahms, H.-U., Bergmans, M. and Schminke, H. K. (1990). Distribution and adaptations of sea ice inhabiting Harpacticoida (Crustacea, Copepoda) of the Weddell Sea (Antarctica). Marine Ecology 11, 207–226. Dalpadado, P., Borkner, N., Bogstad, B. and Mehl, S. (2001). Distribution of Themisto (Amphipoda) spp. in the Barents Sea and predator–prey interactions. Journal of Marine Science 58, 876–895. Daly, K. L. (1990). Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone. Limnology and Oceanography 35, 1564–1576. Daly, K. L. (2004). Overwintering, growth and development of larval Euphausia superba: An interannual comparison under varying environmental conditions west of the Antarctic Peninsula. Deep-Sea Research II 51, 2139–2168. Daly, K. L. and Macaulay, M. C. (1991). Influence of physical and biological mesoscale dynamics on the seasonal distribution and behaviour of Euphausia superba in the Antarctic marginal ice zone. Marine Ecology Progress Series 79, 37–66. Dauby, P., Scailteur, Y. and De Broyer, C. (2001). Trophic diversity within the eastern Weddell Sea amphipod community. Hydrobiologia 443, 69–86. De Broyer, C., Scailteur, Y., Chapelle, G. and Rauschert, M. (2001). Diversity of epibenthic habitats of gammaridean amphipods in the eastern Weddell Sea. Polar Biology 24, 744–753. de la Mare, W. K. (1997). Abrupt mid-twentieth-century decline in Antarctic sea-ice extent from whaling records. Nature 389, 57–60. Delgado, J. R., Jan˜ a, R. and Marin, V. (1998). Testing hypotheses on life-cycle models for Antarctic calanoid copepods, using qualitative, winter, zooplankton samples. Polar Biology 20, 74–76. SEA ICE CRUSTACEA 299 Demers, S., Legendre, L., Maestrini, S., Rochet, M. and Ingram, R. G. (1989). Nitrogenous nutrition of sea-ice microalgae. Polar Biology 9, 377–383. Dhargalkar, V. K., Burton, H. R. and Kirkwood, J. M. (1988). Animal associations with the dominant species of shallow water macrophytes along the coastline of the Vestfold Hills, Antarctica. Hydrobiologia 165, 141–150. Dieckmann, G. S. and Hellmer, H. H. (2003). The importance of sea ice: An overview. In ‘‘Sea Ice: An introduction to Its Physics, Chemistry, Biology and Ecology’’ (D. N. Thomas and G. S. Dieckmann, eds), pp. 1–22. Blackwell Publishing, Oxford. Dieckmann, G. S., Arrigo, K. R. and Sullivan, C. W. (1992). A high-resolution sampler for nutrient and chlorophyll a profiles of the sea ice platelet layer and underlying water column below fast ice in polar oceans: Preliminary results. Marine Ecology Progress Series 80, 291–300. Diel, S. (1991). Zur Lebensgeschichte dominanter Copepodenarten (Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa) in der Framstraße. Reports on Polar Research 88, 133. Drobysheva, S. S. (1982). Degree of isolation of Thysanoessa inermis (Kryer) and Th. raschii (M. Sars) (Crustacea, Euphausiacea) populations in the southern Barents Sea. International Council for Exploration of the Sea 21CM/1982 L:19, 21. Dunbar, M. J. (1954). The amphipod crustacea of Ungava Bay, Canadian Eastern Arctic. Journal of the Fisheries Research Board of Canada 11, 709–798. Dunton, K. H., Reimnitz, E. and Schonberg, S. (1982). An arctic kelp community in the Alaskan Beaufort Sea. Arctic 35, 464–484. Duquense, S., Riddle, M. J., Schulz, K. L. and Liess, M. (2000). EVects of contaminants in the Antarctic environment—potential of the gammarid crustacean Paramoera walkeri as a biological indicator for Antarctic ecosystems based on toxicity and bioaccumulation of copper and cadmium. Aquatic Toxicology 49, 131–143. Eiane, K. and Daase, M. (2002). Observations of mass mortality of Themisto libellula (Amphipoda, Hyperidae). Polar Biology 25, 396–398. Eicken, H. and Lange, M. A. (1989). Development and properties of sea ice in the coastal regime of the southeastern Weddell Sea. Journal of Geophysical Research 94, 8193–8206. Einarsson, H. (1945). Euphausiacea. I. Northern Atlantic species. Dana Report No. 27. El-Sayed, S. Z. (1971). Biological aspects of the pack ice ecosystem. In ‘‘Symposium on Antarctic Ice and Water Masses’’ (G. E. R. Deacon, ed.), pp. 35–54. Scientific Committee on Antarctic Research, Cambridge. Evans, F. (1977). Seasonal density and production estimates of the commoner planktonic copepods of Northumberland coastal waters. Estuarine and Coastal Marine Science 5, 223–241. Everson, I. (2000). ‘‘Krill: Biology, Ecology and Fisheries’’ Blackwell, Oxford. Falk-Petersen, S., Sargent, J. R. and Tande, K. (1987). Food pathways and life strategy in relation to the lipid composition of sub-Arctic zooplankton. Polar Biology 8, 115–120. Falk-Petersen, S., Hopkins, C. and Sargent, J. R. (1990). Trophic relationships in the pelagic, Arctic food web. In ‘‘Trophic Relationships in the Marine Environment’’ (M. Barnes and R. N. Gibson, eds), ‘‘Proceedings of the 24th European Marine Biological Symposium’’, pp. 315–333. Aberdeen University Press, Aberdeen. 300 CAROLIN E. ARNDT AND KERRIE M. SWADLING Falk-Petersen, S., Hagen, W., Kattner, G., Clarke, A. and Sargent, J. R. (2000). Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Canadian Journal of Fisheries and Aquatic Science 57, 179–191. Feder, H. M. and Lewett, S. C. (1981). Feeding interaction in the eastern Bering Sea with emphasis on the benthos. In ‘‘The eastern Bering Sea shelf: Oceanography and Resources, Vol. II’’ (D. W. Hood and J. Calder, eds), pp. 1229–1261. University of Washington Press, Seattle. Fortier, L., Fortier, M. and Demers, S. (1995). Zooplankton and larval fish community development: Comparative study under first-year sea ice at low and high latitudes in the northern hemisphere. Proceedings of the NIPR Symposium on Polar Biology 8, 11–19. Fortier, M., Fortier, L., Hattori, H., Saito, H. and Legendre, L. (2001). Visual predators and the diel vertical migration of copepods under Arctic sea ice during the midnight sun. Journal of Plankton Research 23, 1263–1278. Foster, B. A. (1987). Composition and abundance of zooplankton under the spring sea-ice of McMurdo Sound, Antarctica. Polar Biology 8, 41–48. Fransz, H. G. (1988). Vernal abundance, structure and development of epipelagic copepod populations of the eastern Weddell Sea (Antarctica). Polar Biology 9, 107–114. Fraser, W. R. and Hofmann, E. E. (2003). A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Marine Ecology Progress Series 265, 1–15. Frazer, T. K., Quetin, L. B. and Ross, R. M. (2002). Abundance, sizes and development of larval krill, Euphausia superba, during winter in ice-covered seas west of the Antarctic Peninsula. Journal of Plankton Research 24, 1067–1077. Friedrich, C. (1997). O ¨ kologische Untersuchungen zur Fauna des arktischen Meereises (Ecological investigations on the fauna of the Arctic sea-ice). Berichte zur Polarforschung 246, 211. Gallienne, C. P. and Robins, D. B. (2001). Is Oithona the most important copepod in the world’s oceans. Journal of Plankton Research 23, 1421–1432. Garrison, D. L. (1991). Antarctic sea ice biota. American Zoologist 31, 17–33. Garrison, D. L. and Buck, K. R. (1989). The biota of Antarctic pack ice in the Weddell Sea and Antarctic Peninsula regions. Polar Biology 10, 211–219. George, R. Y. and Paul, A. Z. (1970). ‘‘USC-FSU-Biological Investigations from the Fletcher’s Ice Island T-3 on Deep-Sea and Under-Ice Benthos of the Arctic Ocean’’. University of Southern California, Department of Biological Sciences, Los Angeles. Gibson, J. A. E., Swadling, K. M. and Burton, H. R. (1997). Interannual variation in dominant phytoplankton species and biomass near Davis Station, East Antarctica. Proceedings of the NIPR Symposium on Polar Biology 10, 78–90. Gloersen, P., Campbell, W. J., Cavalieri, D., Comiso, J. C., Parkinson, C. L. and Zwally, H. J. (1993). Satellite passive microwave observations and analysis of arctic and Antarctic sea ice, 1978–1987. Annals of Glaciology 17, 149–154. Golikov, A. N. and Averintzev, V. G. (1977). Distribution patterns of benthic and ice biocoenoses in the high latitudes of the Polar Basin and their part in the biological structure of the world ocean. In ‘‘Polar Oceans’’ (M. J. Dunbar, ed.), pp. 331–364. Arctic Institute of North America, Canada. Golikov, A. N. and Scarlato, O. A. (1973). Comparative characteristics of some ecosystems of the upper regions of the shelf in tropical, temperate and Arctic waters. Helgola¨nder Wissenschaftliche Meeresuntersuchungen 24, 219–234. SEA ICE CRUSTACEA 301 Gonzalez, H. and Smetacek, V. (1994). The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton material. Marine Ecology Progress Series 113, 233–246. Gradinger, R. (1999). Integrated abundance and biomass of sympagic meiofauna in Arctic and Antarctic pack ice. Polar Biology 22, 169–177. Gradinger, R. and Bluhm, B. (2004). In-situ observations on the distribution and behavior of amphipods and Arctic cod (Boreogadus saida) under the sea ice of the High Arctic Canada Basin. Polar Biology 27, 595–603. Gradinger, R., Spindler, M. and Henschel, D. (1991). Development of Arctic sea ice organisms under graded snow cover. Polar Research 10, 295–307. Gradinger, R., Spindler, M. and Weissenberger, J. (1992). On the structure and development of Arctic pack ice communities in Fram Strait: A multivariate approach. Polar Biology 12, 727–733. Gradinger, R., Friedrich, C. and Spindler, M. (1999). Abundance, biomass and composition of the sea ice biota of the Greenland Sea pack ice. Deep-Sea Research II 46, 1457–1472. Gradinger, R., Meiners, K., Plumley, G., Zhang, Q. and Bluhm, B. A. (2005). Abundance and composition of the sea-ice meiofauna in oV-shore pack ice of the Beaufort Gyre in summer 2002 and 2003. Polar Biology 28, 171–181. Graeve, M., Kattner, G. and Piepenburg, D. (1997). Lipids in Arctic benthos: Does the fatty acid and alcohol composition reflect feeding and trophic interactions. Polar Biology 18, 53–61. Grainger, E. H. (1962). Zooplankton of the Foxe Basin in the Canadian Arctic. Journal of the Fisheries Research Board of Canada 19, 377–400. Grainger, E. H. and Hsiao, S. I. C. (1990). Trophic relationships of the sea ice meiofauna in Frobisher Bay, Arctic Canada. Polar Biology 10, 283–292. Grainger,E.H. andMohammed, A. A. (1986).Copepods in arctic sea ice. In ‘‘Proceedings of the second International Conference on Copepoda’’ (G. Schiever, H. K. Schminke and C.-T. Shih, eds), pp. 303–310. NationalMuseums of Canada, Ottawa. Grainger, E. H. and Mohammed, A. A. (1990). High salinity tolerance in sea ice copepods. Ophelia 31, 177–185. Grainger, E. H. and Mohammed, A. A. (1991). Some diagnostic characters of copepodid stages of the cyclopoid copepod Cyclopina schneideri T. Scott and adults of arctic marine Cyclopinidae. Canadian Journal of Zoology 69, 2365–2373. Grainger, E. H., Mohammed, A. A. and Lovrity, J. E. (1985). The sea ice fauna of the Frobisher Bay, Arctic Canada. Arctic 38, 23–30. Green, J. M. and Steele, D. H. (1977). ‘‘Observations on Marine Life Beneath Sea Ice, Resolute Bay, N.W.T. Proceedings of the Circumpolar Conference on Northern Ecology, Ottawa, 1975’’. National Research Council Canada. GriYths, W. B. and Dillinger, R. E. (1981). Invertebrates. In ‘‘Environmental Assessment of the Alaskan Continental Shelf’’. Final reports of principal investigators, Vol. 8. Biological studies. Grnvik, W. and Hopkins, C. C. E. (1984). Ecological investigations of the zooplankton community of Balsfjorden, Northern Norway: Generation cycle, seasonal vertical distribution, and seasonal variations in body weight and carbon and nitrogen content of the copepod Metridia longa (Lubbock). Journal of Experimental Marine Biology and Ecology 80, 93–107. Gruzov, E. N. (1977). Seasonal alterations in coastal communities in the Davis Sea. In ‘‘Adaptations within Antarctic Ecosystems’’ (G. A. Llano, ed.), pp. 263–278. Gulf Publishing Co., Houston. 302 CAROLIN E. ARNDT AND KERRIE M. SWADLING Gruzov, Y. N., Propp, M. V. and Pushkin, A. F. (1967). Biological associations of coastal areas of the Davis Sea (based on the observations of divers). Soviet Antarctic Expedition Information Bulletin 6, 523–533. Gruzov, Y. N., Propp, M. V. and Pushkin, A. F. (1968). Hydrobiological diving work in the Antarctic. Soviet Antarctic Expedition Information Bulletin 6, 405–408. Gulliksen, B. (1984). Under-ice fauna from Svalbard waters. Sarsia 69, 17–23. Gulliksen, B. and Lnne, O. J. (1989). Distribution, abundance, and ecological importance of marine sympagic fauna in the Arctic. Rapports et Proce`s-Verbaux des Re´unions, International Council for the Exploration of the Sea 188, 133–138. Gulliksen, B. and Lnne, O. J. (1991). Sea ice macrofauna in the Antarctic and the Arctic. Journal of Marine Systems 2, 53–61. Gulliksen, B., Palerud, R., Brattegard, T. and Sneli, J.-A. (1999). ‘‘Distribution of marine benthic macro-organisms at Svalbard (including Bear Island) and Jan Mayen’’, Research Report for DN 1999-4. Directorate for Nature Management. Gu¨nther, S., George, K. H. and Gleitz, M. (1999). High sympagic metazoan abundance in platelet layers at Drescher Inlet, Weddell Sea, Antarctica. Polar Biology 22, 82–89. Gurjanova, E. (1936). Beitra¨ge zur Amphipodenfauna des Karischen Meeres. Zoologischer Anzeiger 116, 145–152. Gurjanova, E. F. (1951). ‘‘Beach Hoppers of the Seas of the USSR and Adjacent Waters (Amphipoda: Gammaridea)’’. Fauna USSR, Academy of Science of the USSR, Moscow. Hagen, W. (1988). Zur Bedeutung der Lipide im antarktischen Zooplankton (on the significance of lipids in Antarctic zooplankton). Berichte zur Polarforschung 49, 1–129. Hagen, W. and Schnack-Schiel, S. B. (1996). Seasonal lipid dynamics in dominant Antarctic copepods: Energy for overwintering or reproduction? Deep-Sea Research I 43, 139–158. Hagen, W., Kattner, G. and Graeve, M. (1993). Calanoides acutus and Calanus propinquus, Antarctic copepods with diVerent lipid storage modes via wax esters or triacylglycerols. Marine Ecology Progress Series 97, 135–142. Hagen, W., Kattner, G., Terbru¨ggen, A. and VanVleet, E. S. (2001). Lipid metabolism of the Antarctic krill Euphausia superba. Marine Biology 139, 95–104. Hall, M. O. and Bell, S. S. (1993). Meiofauna on the seagrass Thalassia testudinum— population characteristics of harpacticoid copepods and associations with algal epiphytes. Marine Biology 116, 137–146. Hamner, W. M., Hamner, P. P., Strand, S. W. and Gilmer, R. W. (1983). Behaviour of Antarctic krill, Euphausia superba: Chemoreception, feeding, schooling, and molting. Science 220, 433–435. Hamner, W. M., Hamner, P. P., Obst, B. S. and Carleton, J. H. (1989). Field observations on the ontogeny of schooling of Euphausia superba furciliae and its relationship to ice in Antarctic waters. Limnology and Oceanography 34, 451–456. Harrington, S. A. and Thomas, P. G. (1987). Observations on spawning by Euphausia crystallorophias from waters adjacent to Enderby Land (East Antarctica) and speculations on the early ontogenetic ecology of neritic euphausiids. Polar Biology 7, 93–95. Hempel, I and Hempel, G. (1986). Field observations on the developmental ascent of larval Euphausia superba (Crustacea). Polar Biology 6, 121–126. Herman, Y. and Hopkins, D. (1980). Arctic Ocean climate in late Cenozoic time. Science 209, 557–562. SEA ICE CRUSTACEA 303 Hicks, G. and Coull, B. (1983). The ecology of marine meiobenthic harpacticoid copepods. Oceanography and Marine Biology: An Annual Review 21, 67–175. Hirche, H.-J. (1997). Life cycle of the copepod Calanus hyperboreus in the Greenland Sea. Marine Biology 128, 607–618. Hirche, H.-J. and Kattner, G. (1993). Egg production and lipid content of Calanus glacialis in spring: Indication of a food-dependent and food-independent reproductive mode. Marine Biology 117, 615–622. Hirche, H.-J. and NiehoV, B. (1996). Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea—field and laboratory observations. Polar Biology 16, 209–219. Hofmann, E. E., Wiebe, P. H., Costa, D. P. and Torres, J. J. (2004). Integrated ecosystem studies of western Antarctica Peninsula continental shelf waters and related southern ocean regions. Deep-Sea Research II 51, 1921–2344. Holloway, G. and Sou, T. (2001). Is Arctic sea ice rapidly thinning? Ice and Climate News 1. Available online at acsys.npolar.no/news/2001/No1_p2.htm. Holt, E. W. and Tattersall, W. M. (1906). Preliminary notice of the Schizopoda collected by H.M.S. Discovery in the Antarctic Region. Annals and Magazine of Natural History 7, 1–11. Hop, H., Poltermann, M., Lnne, O. J., Falk-Petersen, S., Krosnes, R. and Budgell, W. P. (2000). Ice amphipod distribution relative to ice density and under-ice topography in the northern Barents Sea. Polar Biology 23, 357–367. Hop, H., Pearson, T., Hegseth, E. N., Kovacs, K. M., Wiencke, C., Kwasniewski, S., Eiane, K., Mehlum, F., Gulliksen, B., Wlodarska-Kowalczuk, M., Lydersen, C., Weslawski, J. M., Cochrane, S., Gabrielsen, G. W., Leakey, R. J. G., Lnne, O. J., Zajaczkowski, M., Falk-Petersen, S., Kendall, M., Wa¨ngberg, S.-A° ., Bischof, K., Voronkov, A. Y., Kovaltchouk, N. A., Wiktor, J., Poltermann, M., die Prisco, G., Papucci, C. and Gerland, S. (2002). The marine ecosystem of Kongsfjorden, Svalbard. Polar Research 21, 167–208. Hopkins, T. L. (1985). Food web of an Antarctic midwater ecosystem. Marine Biology 89, 197–212. Hopkins, T. (1987). Midwater food web in McMurdo Sound, Ross Sea, Antarctica. Marine Biology 96, 93–106. Hopkins, C. C. E., Tande, K. S., Gronvik, S. and Sargent, J. R. (1984). Ecological investigations of the zooplankton community of Balsfjorden, northern Norway: An analysis of growth and overwintering tactics in relation to niche and environment in Metridia longa (Lubbock), Calanus finmarchicus (Gunnerus), Thysanoessa inermis (Kryer) and T. rashi (M. Sars). Journal of Experimental Marine Biology and Ecology 82, 77–99. Horner, R. A. (1972). Ecological studies on arctic sea ice organisms. Institute of Marine Science, University of Alaska, Fairbanks. Report R 72-17. Horner, R. A. (1985). ‘‘Sea Ice Biota’’. CRC Press, Florida. Horner, R., Ackley, S. F., Dieckmann, G. S., Gulliksen, B., Hoshiai, T., Legendre, L., Melnikov, I. A., Reeburgh, W. S., Spindler, M. and Sullivan, C. W. (1992). Ecology of sea ice biota 1. Habitat, terminology and methodology. Polar Biology 12, 417–427. Hoshiai, T. and Tanimura, A. (1986). Sea ice meiofauna at Syowa Station, Antarctica. Memoirs of the National Institute of Polar Research, Special Issue 44, 118–124. Hoshiai, T., Tanimura, A. and Watanabe, K. (1987). Ice algae as food of an Antarctic ice-associated copepod, Paralabidocera antarctica (I. C. Thompson). Proceedings of the NIPR Symposium on Polar Biology 1, 105–111. 304 CAROLIN E. ARNDT AND KERRIE M. SWADLING Hoshiai, T., Tanimura, A., Fukuchi, M. and Watanabe, K. (1989). Feeding by the nototheniid fish, Pagothenia borchgrevinki on the ice-associated copepod, Paralabidocera antarctica. Proceedings of the National Institute of Polar Research Symposium on Polar Biology 2, 61–64. Ikeda, T. (1986). Preliminary observations on the development of the larvae of Euphausia crystallorophias Holt and Tattersall in the laboratory (extended abstract). Memoirs of the National Institute of Polar Research Special Issue 40, 183–186. Ikeda, T. and Dixon, P. (1982). Body shrinkage as a possible over-wintering mechanism of the Antarctic krill, Euphausia superba Dana. Journal of Experimental Marine Biology and Ecology 62, 143–151. Ikeda, T. and Kirkwood, R. (1989). Metabolism and body composition of two euphausiids (Euphausia superba and E. crystallorophias) collected from under the pack-ice oV Enderby Land, Antarctica. Marine Biology 100, 301–308. Ito, T. and Fukuchi, M. (1978). Harpacticus furcatus Lang from the Antarctic Peninsula, with reference to the copepodid stages (Copepoda: Harpacticoida). Antarctic Record 61, 40–64. Johnson, G. L. (1990). Morphology and plate tectonics: The modern polar oceans. In ‘‘Geological History of the Polar Oceans: Arctic versus Antarctic’’ (U. Bleil and J. Thiede, eds), pp. 11–28. North Atlantic Treaty Organization, ASI Series C. Johnson, M. W. and Olson, J. B. (1948). The life history and biology of a marine harpacticoid copepod, Tisbe furcata (Baird). Biological Bulletin 95, 320–332. Jones, R. H. and Flynn, K. J. (2005). Nutritional status and diet composition aVect the value of diatoms as copepod prey. Science 307, 1457–1459. Ju, S.-J. and Harvey, H. R. (2004). Lipids as markers of nutritional condition and diet in the Antarctic krill Euphausia superba and Euphausia crystallorophias during austral winter. Deep-Sea Research II 51, 2199–2214. Kattner, G. and Hagen, W. (1995). Polar herbivorous copepods—diVerent pathways in lipid biosynthesis. ICES Journal of Marine Science 52, 329–335. Kattner, G. and Hagen, W. (1998). Lipid metabolism of the Antarctic euphausiid Euphausia crystallorophias and its ecological implications. Marine Ecology Progress Series 170, 203–213. Kattner, G., Graeve, M. and Hagen, W. (1994). Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Marine Biology 118, 637–644. Kattner, G., Albers, C., Graeve, M. and Schnack-Schiel, S. B. (2003). Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: Indication on feeding modes. Polar Biology 26, 666–671. Kawaguchi, S. and Nicol, S. (eds), (2003). Proceedings of the International Workshop on Understanding Living Krill for Improved Management and Stock Assessment. Marine and Freshwater Behaviour and Physiology 36, 1–307. Kern, J. C. and Carey, A. G., Jr. (1983). The faunal assemblage inhabiting seasonal sea ice in the nearshore Arctic Ocean with emphasis on copepods. Marine Ecology Progress Series 10, 159–167. Kirkwood, J. M. (1993). Zooplankton community dynamics and diel vertical migration in Ellis Fjord, Vestfold Hills, Antarctica. PhD thesis, Monash University, Victoria, Australia. Kirkwood, J. M. (1996). The developmental rate of Euphausia crystallorophias larvae in Ellis Fjord, Vestfold Hills, Antarctica. Polar Biology 16, 527–530. SEA ICE CRUSTACEA 305 Kirkwood, J. M. and Burton, H. R. (1987). Three new zooplankton nets designed for under-ice sampling; with preliminary results of collections made from Ellis Fjord, Antarctica during 1985. Proceedings of the NIPR Symposium on Polar Biology 1, 112–122. Kittel, W. and Ligowski, R. (1980). Algae found in the food of Euphausia crystallorophias (Crustacea). Polish Polar Research 1, 129–137. Klekowski, R. Z., Opalinski, K. W. and Rakusa-Suszczewski, S. (1973). Respiration of Antarctic amphipoda Paramoera walkeri Stebbing during the winter season. Polskie Archiwum Hydrobiologii 20, 301–308. Klekowski, R. Z. and Weslawski, J. M. (1991). ‘‘Atlas of the Marine Fauna of Southern Spitsbergen’’, Vol. 2, ‘‘Invertebrates, Part I’’. Polish Academy of Science, Gdansk. Kotwicki, L. (2002). Benthic Harpacticoida (Crustacea, Copepoda) from the Svalbard archipelago. Polish Polar Research 23, 185–191. Krembs, C., Mock, T. and Gradinger, R. (2001). A mesocosm study of physical– biological interactions in artificial sea ice: EVects of brine channel surface evolution and brine movement on algal biomass. Polar Biology 24, 356–364. Krembs, C., Tuschling, K. and Juterzenka, K. V. (2002). The topography of the icewater interface—its influence on the colonization of sea ice by algae. Polar Biology 25, 106–117. Kurbjeweit, F. (1993). Reproduktion und Lebenszyklen dominanter Copepodenarten aus dem Weddellmeer, Antarktis (reproduction and life cycles of dominant copepod species from the Weddell Sea, Antarctica). Berichte zur Polarforschung 129, 1–238. Kurbjeweit, F., Gradinger, R. and Weissenberger, J. (1993). The life cycle of Stephos longipes—an example of cryopelagic coupling in the Weddell Sea (Antarctica). Marine Ecology Progress Series 98, 255–262. Lee, R. F. (1975). Lipids of arctic zooplankton. Comparative Biochemistry and Physiology 51, 263–266. Liess, M., Champeau, O., Riddle, M. J., Schulz, R. and Duquense, S. (2001). Combined eVects of ultraviolet-B radiation and food shortage on the sensitivity of the Antarctic amphipod Paramoera walkeri to copper. Environmental Toxicology and Chemistry 20, 2088–2092. Loeb, V., Siegel, V., Holm-Hansen, O., Hewitt, R., Fraser, W., Trivelpiece, W. and Trivelpiece, S. (1997). EVects of sea ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900. Lnne, O. J. (1988). A diver-operated electric suction sampler for sympagic (¼ underice) invertebrates. Polar Research 6, 135–136. Lnne, O. J. and Gulliksen, B. (1991a). On the distribution of sympagic macro-fauna in the seasonally ice covered Barents Sea. Polar Biology 11, 457–469. Lnne, O. J. and Gulliksen, B. (1991b). Sympagic macro-fauna from multiyear seaice near Svalbard. Polar Biology 11, 471–477. Lubin, D. and Massom, R. (2005). ‘‘Polar Remote Sensing: Atmosphere and Polar Oceans’’. Springer Praxis Books, Berlin (Germany) and Chichester (UK). MacGinitie, G. E. (1955). Distribution and ecology of the marine invertebrates of Point Barrow, Alaska. Smithsonian Miscellaneous Collection 128, 1–201. MacLellan, D. C. (1967). The annual cycle of certain calanoid species in West Greenland. Canadian Journal of Zoology 45, 101–105. Mangel, M. and Nicol, S. (eds), (2000). Proceedings of the Second International Krill Symposium, Santa Cruz, California, August 1999. Canadian Journal of Fisheries and Aquatic Sciences Supplement 3, 1–202. 306 CAROLIN E. ARNDT AND KERRIE M. SWADLING Marr, J. W. S. (1962). The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discovery Reports 32, 33–464. Marschall, H.-P. (1988). The overwintering strategy of Antarctic krill under the packice of the Weddell Sea. Polar Biology 9, 129–135. Matthews, J. B. L., Hestad, L. and Bakke, J. L. W. (1978). Ecological studies in Korsfjorden, Western Norway. The generations and stocks of Calanus hyperboreus and C. finmarchicus in 1971–1974. Oceanologica Acta 1, 277–284. Mauchline, J. (1998). The biology of calanoid copepods. Advances in Marine Biology 33, 1–710. Maykut, G. A. (1985). The ice environment. In ‘‘Sea Ice Biota’’ (R. A. Horner, ed.), pp. 21–82. CRC Press, Florida. Mayzaud, P., Albessard, E. and Cuzin-Roudy, J. (1998). Changes in lipid composition of the Antarctic krill Euphausia superba in the Indian sector of the Antarctic Ocean: Influence of geographical location, sexual maturity stage and distribution among organs. Marine Ecology Progress Series 173, 149–162. McAllen, R. and Block,W. (1997). Aspects of the cryobiology of the intertidal harpacticoid copepod Tigriopus brevicornis (O. F. Mu¨ ller). Cryobiology 35, 309–317. McConville, M. J., Mitchell, C. and Wetherbee, R. (1985). Patterns of carbon assimilation in a microalgal community from annual sea ice, East Antarctica. Polar Biology 4, 135–141. McGrath-Grossi, S., Kottmeier, S. T., Mo, R. L., Taylor, G. T. and Sullivan, C. W. (1987). Sea ice microbial communities. VI. Growth and primary production in bottom ice under graded snow cover. Marine Ecology Progress Series 35, 153–164. McLaren, I. A. (1969). Population and production ecology of zooplankton in Ogac Lake, a landlocked fjord on BaYn Island. Journal of the Fisheries Research Board of Canada 26, 1485–1559. Melnikov, I. A. (1989). Ecology of Arctic Ocean cryopelagic fauna. In ‘‘The Arctic Seas—Climatology, Oceanography, Geology and Biology’’ (Y. E. Hermann, ed.), pp. 235–256. Van Nostrand Reinhold, New York. Melnikov, I. A. (1997). ‘‘The Arctic Sea Ice Ecosystem’’. Gordon and Breach Science Publishers, Amsterdam. Melnikov, I. A. and Kulikov, A. S. (1980). The cryopelagic fauna of the central Arctic Basin. In ‘‘Biology of the Central Arctic Basin’’ (M. E. Vinogradov and I. A. Melnikov, eds), pp. 97–111. Nauka, Moscow. Melnikov, I. A. and Spiridonov, V. A. (1996). Antarctic krill under perennial sea ice in the western Weddell Sea. Antarctic Science 8, 323–329. Melnikov, I. A., Zhitina, L. S. and Kolosova, H. G. (2001). The Arctic sea ice biological communities in recent environmental changes. Memoirs of the National Institute of Polar Research 54, 409–416. Melnikov, I. A., Kolosova, E. G., Welch, H. E. and Zhitina, L. S. (2002). Sea ice biological communities and nutrient dynamics in the Canada Basin of the Arctic Ocean. Deep-Sea Research I 49, 1623–1649. Menshenina, L. L. and Melnikov, I. A. (1995). Under-ice zooplankton of the western Weddell Sea. Polar Biology 8, 126–138. Metz, C. (1995). Seasonal variation in the distribution and abundance of Oithona and Oncaea species (Copepoda, Crustacea) in the southeastern Weddell Sea, Antarctica. Polar Biology 15, 187–194. Metz, C. (1996). Lebensstrategien dominanter antarktischer Oithonidae (Cyclopoida, Copepoda) und Oncaeidae (Poecilostomatoida, Copepoda) im Bellingshausenmeer. (Life strategies of dominant Antarctic Oithonidae (Cyclopoida, Copepoda) SEA ICE CRUSTACEA 307 and Oncaeidae (Poecilostomatoida, Copepoda) in the Bellingshausen Sea). Berichte zur Polarforschung 207, 1–109. Metz, C. (1998). Feeding of Oncaea curvata (Poecilostomatoida, Copepoda). Marine Ecology Progress Series 169, 229–235. Metz, C. and Schnack-Schiel, S. B. (1995). Observations on carnivorous feeding in Antarctic calanoid copepods. Marine Ecology Progress Series 129, 71–75. Meyer, B. and Oettl, B. (2005). EVects of short-term starvation on composition and metabolism of larval Antarctic krill Euphausia superba. Marine Ecology Progress Series 292, 263–270. Meyer, B., Atkinson, A., Stu¨bing, D., Oettl, B., Hagen, W. and Bathmann, U. V. (2002). Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter—I. Furcilia III larvae. Limnology and Oceanography 47, 943–952. Michel, C., Nielsen, T. G., Nozais, C. and Gosselin, M. (2002). Significance of sedimentation and grazing by ice micro- and meiofauna for carbon cycling in annual sea ice (northern BaYn Bay). Aquatic Microbial Ecology 30, 57–68. Michels, J. and Schnack-Schiel, S. B. (2005). Feeding in dominant Antarctic copepods— does the morphology of the mandibular gnathobases relate to diet? Marine Biology 146, 483–495. Mohr, J. L. and Tibbs, J. (1963). Ecology of ice substrates. In ‘‘Proceedings of the Arctic Basin Symposium, October 1962’’, pp. 245–248. Arctic Institute of North America. Montagna, P. A. and Carey, A. G., Jr. (1978). Distributional notes on Harpacticoida (Crustacea: Copepoda) collected from the Beaufort Sea (Arctic Ocean). Astarte 11, 117–122. Mueller, D. R., Vincent, W. F. and JeVries, M. O. (2003). Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophysical Research Letters 30(20), 2031. Mumm, N. (1991). Zur sommerlichen Verteilung des Mesozooplanktons im Nansen- Becken, Nordpolarmeer. Berichte zur Polarforschung 154, 1–90. Nansen, F. (1897). ‘‘Furthest North’’. Archibald Constable & Co., London. Nicol, S. (1995). Krill, Antarctic. In ‘‘Encyclopedia of Environmental Biology’’ (W. Nierenberg, ed.), pp. 389–402. Academic Press, San Diego. Nicol, S., Pauly, T., BindoV, N. L., Wright, S., Thiele, D., Hosie, G. W., Strutton, P. G. and Woehler, E. (2000a). Ocean circulation oV east Antarctica aVects ecosystem structure and sea-ice extent. Nature 406, 504–507. Nicol, S., Kitchener, J., King, R., Hosie, G. W. and de la Mare, W. K. (2000b). Population structure and condition of Antarctic krill (Euphausia superba) oV East Antarctica (80–150E) during the austral summer of 1995/96. Deep-Sea Research II 47, 2489–2518. Nicol, S., Virtue, P., King, R., Davenport, S. R., McGaYn, A. F. and Nichols, P. (2004). Condition of Euphausia crystallorophias oV East Antarctica in winter in comparison to other seasons. Deep-Sea Research II 51, 2215–2224. NiehoV, B., Schnack-Schiel, S., Cornils, A. and Brichta, M. (2002). Reproductive activity of two dominant Antarctic copepod species, Metridia gerlachei and Ctenocalanus citer, in late autumn in the eastern Bellingshausen Sea. Polar Biology 25, 583–590. Nordhausen, W. (1994). Winter abundance and distribution of Euphausia superba, E. crystallorophias, and Thysanoessa macrura in Gerlache Strait and Crystal Sound, Antarctica. Marine Ecology Progress Series 109, 131–142. 308 CAROLIN E. ARNDT AND KERRIE M. SWADLING Norrbin, M. F., Olsen, R.-E. and Tande, K. S. (1990). Seasonal variation in lipid class and fatty acid composition of two small copepods in Balsfjorden, northern Norway. Marine Biology 105, 205–211. Nozais, C., Gosselin, M., Michel, C. and Tita, G. (2001). Abundance, biomass, composition and grazing impact of the sea-ice meiofauna in the North Water, northern BaYn Bay. Marine Ecology Progress Series 217, 235–250. O’Brien, D. P. (1987). Direct observations of the behaviour of Euphausia superba and Euphausia crystallorophias (Crustacea: Euphausiacea) under pack ice during the Antarctic spring of 1985. Journal of Crustacean Biology 7, 437–448. O ´ lafsson, E., Ingo´ lfsson, A. and Steinarsdo´ ttir, M. B. (2001). Harpacticoid copepod communities of floating seaweed: Controlling factors and implications for dispersal. Hydrobiologia 453/454, 189–200. Opalinski, K. W. (1974). Standard, routine and active metabolism of the Antarctic amphipod—Paramoera walkeri Stebbing. Polskie Archiwum Hydrobiologii 21, 423–429. PaVenho¨ fer, G.-A. (2002). An assessment of the eVects of diatoms on planktonic copepods. Marine Ecology Progress Series 227, 305–310. Pakhomov, E. and Perissinotto, R. (1996). Antarctic neritic krill Euphausia crystallorophias: Spatio-temporal distribution, growth and grazing rates. Deep Sea Research I 43, 59–87. Palmisano, A. C. and Sullivan, C. W. (1983). Sea ice microbial communities (SIMCO). 1. Distribution, abundance, and primary production of ice microalgae in McMurdo Sound, Antarctica in 1980. Polar Biology 2, 171–177. Parkinson, C. L. (2000). Variability of Arctic sea ice: The view from space, an 18-year record. Arctic 53, 341–358. Pasternak, A. F. and Schnack-Schiel, S. B. (2001). Feeding patterns of dominant Antarctic copepods: An interplay of diapause, selectivity, and availability of food. Hydrobiologia 453/454, 25–36. Pavshtiks, E. A. (1980). About some regularities in plankton life of the central Arctic Ocean. In ‘‘Biology of the Central Arctic Basin’’ (M. E. Vinogradov and I. E. Melnikov, eds), pp. 142–154. Nauka, Moscow. Perissinotto, R., Gurney, L. and Pakhomov, E. A. (2000). Contribution of heterotrophic material to diet and energy budget of Antarctic krill, Euphausia superba. Marine Biology 136, 129–135. Pike, D. G. and Welch, H. E. (1990). Spatial and temporal distribution of sub-ice macrofauna in the Barrow Strait area, Northwest Territories. Canadian Journal of Fisheries and Aquatic Sciences 47, 81–91. Pohnert, G. (2005). Diatom/copepod interactions in plankton: The indirect chemical defense of unicellular algae. ChemBioChem 6, 946–959. Poltermann, M. (1997). Biologische und o¨kologische Untersuchungen zur kryopelagischen Amphipodenfauna des arktischen Meereises. Berichte zur Polarforschung 225, 170. Poltermann, M. (1998). Abundance, biomass and small-scale distribution of cryopelagic amphipods in the Franz Josef Land area (Arctic). Polar Biology 20, 134–138. Poltermann, M. (2000). Growth, production and productivity of the Arctic sympagic amphipod Gammarus wilkitzkii. Marine Ecology Progress Series 193, 109–116. Poltermann, M. (2001). Arctic sea ice as feeding ground for amphipods—food sources and strategies. Polar Biology 24, 89–96. SEA ICE CRUSTACEA 309 Poltermann, M., Hop, H. and Falk-Petersen, S. (2000). Life under Arctic sea ice— reproduction strategies of two sympagic (ice–associated) amphipod species, Gammarus wilkitzkii and Apherusa glacialis. Marine Biology 136, 913–920. Proshutinsky, A. Y. and Johnson, M. A. (1997). Two circulation regimes of the winddriven Arctic Ocean. Journal of Geophysical Research 102, 12493–12514. Quetin, L. B. and Ross, R. M. (2003). Episodic recruitment in Antarctic krill Euphausia superba in the Palmer LTER study region. Marine Ecology Progress Series 259, 185–200. Rakusa-Suszczewski, S. (1972). The biology of Paramoera walkeri Stebbing (Amphipoda) and the Antarctic sub-fast ice community. Polskie Archiwum Hydrobiologii 19, 11–36. Rakusa-Suszczewski, S. (1982). The biology and metabolism of Orchomene plebs (Hurley, 1965) (Amphipoda: Gammaridea) from McMurdo Sound, Ross Sea, Antarctica. Polar Biology 1, 47–54. Rakusa-Suszczewski, S. and Dominas, H. (1974). Chemical composition of the Antarctic amphipoda Paramoera walkeri Stebbing and chromatographic analysis of its lipids. Polskie Archiwum Hydrobiologii 21, 261–268. Rakusa-Suszczewski, S. and Klekowski, R. Z. (1973). Biology and respiration of the Antarctic amphipoda (Paramoera walkeri Stebbing) in the summer. Polskie Archiwum Hydrobiologii 20, 475–488. Ray, C. (1966). Stalking seals under Antarctic ice. Geographic Magazine, London 129, 54–65. Razouls, S., Razouls, C. and de Bove´e, F. (2000). Biodiversity and biogeography of Antarctic copepods. Antarctic Science 12, 343–362. Reid, K. and Croxall, J. P. (2001). Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proceedings of the Royal Society of London B 268, 377–384. Reimnitz, E., Clayton, J. J., Kempema, E. W., Payne, J. R. and Weber, W. S. (1993). Interaction of rising frazil with suspended particles: Tank experiments with application to nature. Cold Regions Science Technology 21, 117–135. Richardson, M. G. and Whitaker, T. M. (1979). An Antarctic fast-ice food chain: Observations on the interaction of the amphipod Pontogeneia antarctica Chevreux with ice-associated micro-algae. British Antarctic Survey Bulletin 47, 107–115. Rigor, I. G., Wallace, J. M. and Colony, R. L. (2002). On the response of sea ice to the Arctic Oscillation. Journal of Climate 15, 2648–2668. Ross, J. C. (1847). ‘‘A Voyage of Discovery and Research in the Southern and Antarctic Regions’’. John Murray, London. Ross, R. M. and Quetin, L. B. (1982). Euphausia superba: Fecundity and physiological ecology of its eggs and larvae. Antarctic Journal of the United States 17, 166–167. Ross, R. M. and Quetin, L. B. (1986). How productive are Antarctic krill? BioScience 36, 264–269. Ross, R. M. and Quetin, L. B. (1989). Energetic cost to develop to the first feeding stage of Euphausia superba Dana and the eVect of delays in food availability. Journal of Experimental Marine Biology and Ecology 133, 103–127. Ross, R. M., Quetin, L. B., Newberger, T. and Oakes, S. A. (2004). Growth and behaviour of larval krill (Euphausia superba) under the ice in late winter 2001 west of the Antarctic Peninsula. Deep-Sea Research II 51, 2169–2184. Rothrock, D. A., Yu, Y. and Maykut, G. A. (1999). Thinning of the Arctic ice cover. Geophysical Research Letters 26, 3469–3472. 310 CAROLIN E. ARNDT AND KERRIE M. SWADLING Runge, J. A. and Ingram, R. G. (1988). Underice grazing by planktonic, calanoid copepods in relation to a bloom of ice microalgae in southeastern Hudson Bay. Limnology and Oceanography 33, 280–286. Runge, J. A. and Ingram, R. G. (1991). Under-ice feeding and diel migration by the planktonic copepods Calanus glacialis and Pseudocalanus minutus in relation to the ice algal production cycle in southeastern Hudson Bay. Marine Biology 108, 217–226. Sagar, P. M. (1980). Life cycle and growth of the Antarctic gammarid amphipod Paramoera walkeri (Stebbing, 1906). Journal of the Royal Society of New Zealand 10, 259–270. Sakshaug, E. and Walsh, J. (2000). Marine biology: Biomass, productivity distributions and their variability in the Barents and Bering Seas. In ‘‘The Arctic: Environment, People and Policy’’ (M. Nuttall and T. V. Callaghan, eds), pp. 163–196. Harwood Academic Publications, Amsterdam. Sainte-Marie, B. (1992). Foraging of scavenging deep-sea lysianassoid amphipods. In ‘‘Deep-Sea Food Chains and the Global Carbon Cycle’’ (G. T. Rowe and V. Pariente, eds), pp. 105–124. Kluwer Academic Publishers, Netherlands. Sargent, J. R. and Falk-Petersen, S. (1988). The lipid biochemistry of calanoid copepods. Hydrobiologia 167/168, 101–114. Sars, G. O. (1900). Crustacea. In ‘‘The Norwegian North Pole Expedition 1893–1896, Scientific Research’’ (F. Nansen, ed.), Vol. 1, pp. 1–137. Bergen Museum, Bergen. Schizas, N. V. and Shirley, T. C. (1996). Seasonal changes in structure of an Alaskan intertidal meiofaunal assemblage. Marine Ecology Progress Series 133, 115–124. Schmidt, K.,Atkinson, A., Stu¨bing,D.,McClelland, J.W.,Montoya, J. P. andVoss, M. (2003). Trophic relationships among Southern Ocean copepods and krill: Some uses and limitations of a stable isotope approach. Limnology and Oceanography 48, 277–289. Schnack-Schiel, S. B. (2001). Aspects of the study of the life cycles of Antarctic copepods. Hydrobiologia 453/454, 9–24. Schnack-Schiel, S. B. (2002). The macrobiology of sea ice. In ‘‘Sea Ice: An Introduction to Its Physics, Chemsitry, Biology and Ecology’’ (D. N. Thomas and G. S. Dieckmann, eds), pp. 211–239. Blackwell Publishing, Oxford. Schnack-Schiel, S. B. and Hagen, W. (1994). Life cycle strategies and seasonal variations in distribution and population structure of four dominant calanoid copepod species in the eastern Weddell Sea, Antarctica. Journal of Plankton Research 16, 1543–1566. Schnack-Schiel, S. B. and Mizdalski, E. (1994). Seasonal variations in distribution and population structure of Microcalanus pygmaeus and Ctenocalanus citer (Copepoda: Calanoida) in the eastern Weddell Sea. Marine Biology 119, 357–366. Schnack-Schiel, S. B., Hagen, W. and Mizdalski, E. (1991). A seasonal comparison of Calanoides acutus and Calanus propinquus (Copepoda, Calanoida) in the eastern Weddell Sea, Antarctica. Marine Ecology Progress Series 70, 17–27. Schnack-Schiel, S. B., Thomas, D. N., Dieckmann, G. S., Eicken, H., Gradinger, R., Spindler, M., Weissenberger, J., Mizdalski, E. and Beyer, K. (1995). Life cycle strategy of the Antarctic calanoid copepod Stephos longipes. Progress in Oceanography 36, 45–75. Schnack-Schiel, S. B., Thomas, D. N., Dahms, H.-U., Haas, C. and Mizdalski, E. (1998). Copepods in Antarctic sea ice. Antarctic Research Series 73, 173–182. Schnack-Schiel, S. B., Dieckmann, G. S., Gradinger, R., Melnikov, I. A., Spindler, M. and Thomas, D. N. (2001a). Meiofauna in sea ice of the Weddell Sea (Antarctica). Polar Biology 24, 724–728. SEA ICE CRUSTACEA 311 Schnack-Schiel, S. B., Thomas, D. N., Haas, C., Dieckmann, G. and Alheit, R. (2001b). The occurrence of copepods Stephos longipes (Calanoidea) and Drescheriella glacialis (Harpacticoida) in summer sea ice in the Weddell Sea, Antarctica. Antarctic Science 13, 150–157. Scott, C. L., Falk-Petersen, S., Sargent, J. R.,Hop,H., Lnne, O. J. and Poltermann, M. (1999). Lipids and trophic interactions of ice fauna and pelagic zooplankton in the marginal ice zone of the Barents Sea. Polar Biology 21, 65–70. Scott, C. L., Kwasniewski, S., Falk-Petersen, S. and Sargent, J. R. (2000). Lipids and life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbard. Polar Biology 23, 510–516. Scott, C. L., Kwasniewski, S., Falk-Petersen, S. and Sargent, J. (2002). Lipids and fatty acids in the copepod Jaschnovia brevis (Jaschnov) and in particulates from Arctic waters. Polar Biology 25, 65–71. Siegel, V. (1987). Age and growth of Antarctic Euphausiacea (Crustacea) under natural conditions. Marine Biology 96, 483–495. Siegel, V. (2000). Krill (Euphausiacea) life history and aspects of population dynamics. Canadian Journal of Fisheries and Aquatic Sciences 57, 130–150. Siegel, V. and Loeb, V. (1994). Length and age at maturity of Antarctic krill. Antarctic Science 6, 479–482. Siegel, V. and Loeb, V. (1995). Recruitment of the Antarctic krill Euphausia superba and possible causes for its variability. Marine Ecology Progress Series 123, 45–56. Siegel, V. and Harm, U. (1996). The composition, abundance, biomass and diversity of the epipelagic zooplankton communities of the southern Bellingshausen Sea (Antarctic) with special reference to krill and salps. Archive of Fishery and Marine Research 44, 115–139. Siegel, V., Loeb, V. and Groger, J. (1998). Krill (Euphausia superba) density, proportional and absolute recruitment and biomass in the Elephant Island region (Antarctic Peninsula) during the period 1977 to 1997. Polar Biology 19, 393–398. Siferd, T. D., Welch, H. E., Bergmann, M. A. and Curtis, M. F. (1997). Seasonal distribution of sympagic amphipods near Chesterfield Inlet, N.W.T., Canada. Polar Biology 18, 16–22. Skerratt, J. H., Nichols, P. D., McMeekin, T. A. and Burton, H. R. (1995). Seasonal and inter-annual changes in planktonic biomass and community structure in eastern Antarctica using signature lipids. Marine Chemistry 51, 93–113. Smetacek, V. and Nicol, S. (2005). Polar ocean ecosystems in a changing world. Nature 437, 362–368. Smith, S. L. (1990). Egg production and feeding by copepods prior to the spring bloom of phytoplankton in Fram Strait, Greenland Sea. Marine Biology 106, 59–69. Sreide, J. E., Hop, H., Falk-Petersen, S., Gulliksen, B. and Hansen, E. (2003). Macrozooplankton communities and environmental variables in the Barents Sea marginal ice zone in late winter and spring. Marine Ecology Progress Series 263, 43–64. Spindler, M. (1990). A comparison of Arctic and Antarctic sea ice and the eVects of diVerent properties on sea ice biota. In ‘‘Geological History of the Polar Oceans: Arctic versus Antarctic’’ (U. Bleil and J. Thiede, eds), pp. 173–186. Kluwer Academic Publishers, Netherlands. Steele, D. H. (1972). Some aspects of the biology of Gammarellus homari (Crustacea, Amphipoda) in the Northwestern Atlantic. Journal of the Fisheries Research Board of Canada 29, 1340–1343. 312 CAROLIN E. ARNDT AND KERRIE M. SWADLING Steele, D. H. and Steele, V. J. (1974). The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. VIII. Geographic distribution of the northern species. Canadian Journal of Zoology 52, 1115–1120. Steele, D. H. and Steele, V. J. (1975). The biology of Gammarus (Crustacea, Amphipoda) in the northwestern Atlantic. IX. Gammarus wilkitzkii Birula, Gammarus stoerensis Reid, and Gammarus mucronatus Say. Canadian Journal of Zoology 53, 1105–1109. Steinarsdo´ ttir, M. B., Ingo´ lfsson, A. and O ´ lafsson, E. (2003). Seasonality of harpacticoids (Crustacea, Copepoda) in a tidal pool in sub-Arctic south-western Iceland. Hydrobiologia 503, 211–221. Stepnik, R. (1982). All-year populational studies of Euphausiacea (Crustacea) in the Admiralty Bay (King George Island, South Shetland Islands, Antarctic). Polish Polar Research 3, 49–68. Stevens, C. J., Deibel, D. and Parrish, C. C. (2004). Species-specific diVerences in lipid composition and omnivory indices in Arctic copepods collected in deep water during autumn (North Water Polynya). Marine Biology 144, 905–915. Stockton, W. L. (1982). Scavenging amphipods from under the Ross Ice Shelf, Antarctica. Deep-Sea Research 29A, 819–835. Stu¨bing, D. and Hagen, W. (2003). On the use of lipid biomarkers in marine food web analyses: An experimental case study on the Antarctic krill, Euphausia superba. Limnology and Oceanography 48, 1685–1700. Swadling, K. M. (1998). Influence of seasonal ice formation on life cycle strategies of Antarctic copepods. PhD thesis, University of Tasmania, Hobart, Australia. Swadling, K. M. (2001). Population structure of two Antarctic ice-associated copepods, Drescheriella glacialis and Paralabidocera antarctica, in winter sea ice. Marine Biology 139, 597–603. Swadling, K. M., Gibson, J. A. E., Ritz, D. A. and Nichols, P. D. (1997a). Horizontal patchiness in sympagic organisms of the Antarctic fast ice. Antarctic Science 9, 399–406. Swadling, K. M., Gibson, J. A. E., Ritz, D. A., Nichols, P. D. and Hughes, D. E. (1997b). Grazing of phytoplankton by copepods in eastern Antarctic waters. Marine Biology 128, 39–48. Swadling, K. M., McPhee, A. D. and McMinn, A. (2000a). Spatial distribution of copepods in fast ice of eastern Antarctica. Polar Bioscience 13, 55–65. Swadling, K. M., Nichols, P.D, Gibson, J. A. E. and Ritz, D. A. (2000b). Role of lipid in the life cycles of ice-dependent and ice-independent populations of the copepod Paralabidocera antarctica. Marine Ecology Progress Series 208, 171–182. Swadling, K. M., McKinnon, A. D., De’ath, G. and Gibson, J. A. E. (2004). Life cycle plasticity and diVerential growth and development in marine and lacustrine populations of an Antarctic copepod. Limnology and Oceanography 49, 644–655. Tande, K. S. and Henderson, R. J. (1988). Lipid-composition of copepodite stages and adult females of Calanus glacialis in arctic waters of the Barents Sea. Polar Biology 8, 333–339. Tanimura, A., Fukuchi, M. and Ohtsuka, H. (1984a). Occurrence and age composition of Paralabidocera antarctica (Calanoida, Copepoda) under the fast ice near Syowa Station, Antarctica. NIPR Special Issue 32, 81–86. Tanimura, A., Hoshiai, T. and Fukuchi, M. (1996). The life cycle strategy of the iceassociated copepod, Paralabidocera antarctica (Calanoida, Copepoda), at Syowa Station, Antarctica. Antarctic Science 8, 257–266. Tanimura, A., Hoshino, K., Nonaka, Y., Miyamoto, Y. and Hattori, H. (1997). Vertical distribution of Oithona similis and Oncaea curvata (Cyclopoida, SEA ICE CRUSTACEA 313 Copepoda) under sea ice near Syowa Station in the Antarctic winter. Proceedings of the NIPR Symposium on Polar Biology 10, 134–144. Tanimura, A., Hoshiai, T. and Fukuchi, M. (2002). Change in habitat of the sympagic copepod Paralabidocera antarctica from fast ice to seawater. Polar Biology 25, 667–671. Tanimura, A., Minoda, T., Fukuchi, M., Hoshiai, T. and Ohtsuka, H. (1984b). Swarm of Paralabidocera antarctica (Calanoida, Copepoda) under sea ice near Syowa Station, Antarctica. Nankyoku Shiryo (Antarctic Record) 82, 12–19. Thistle, D. (2003). Harpacticoid copepod emergence at a shelf site in summer and winter: Implications for hydrodynamic and mating hypotheses. Marine Ecology Progress Series 248, 177–185. Thomas, D. N. and Dieckmann, G. S. (2003). ‘‘Sea Ice: An introduction to its Physics, Chemistry, Biology and Geology.’’ Blackwell, Oxford. Thomas,D.N., Lara,R. J., Haas, C., Schnack-Schiel, S. B., Dieckmann,G. S.,Kattner, G.,No¨thig, E.-M. andMizdalski, E. (1998). Biological soup within decaying summer sea ice in the Amundsen Sea, Antarctica. Antarctic Research Series 73, 161–171. Torres, J. J., Aarset, A. V., Donnelly, J., Hopkins, T. L., Lancraft, T. M. and Ainley, D. G. (1994a). Metabolism of Antarctic micronektonic Crustacea as a function of depth of occurrence and season. Marine Ecology Progress Series 113, 207–219. Torres, J. J., Donnelly, J., Hopkins, T" name="eprints.referencetext" /> <meta content="Arndt, Carolin E. and Swadling, Kerrie M. (2006) Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies. In: Advances in Marine Biology. . Elsevier, pp. 197-315." name="eprints.citation" /> <meta content="http://eprints.utas.edu.au/2164/1/ArndtSwadling_AMB2006.pdf" name="eprints.document_url" /> <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /> <meta content="Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies" name="DC.title" /> <meta content="Arndt, Carolin E." name="DC.creator" /> <meta content="Swadling, Kerrie M." name="DC.creator" /> <meta content="270702 Marine and Estuarine Ecology (incl. Marine Ichthyology)" name="DC.subject" /> <meta content="This review concerns crustaceans that associate with sea ice. Particular emphasis is placed on comparing and contrasting the Arctic and Antarctic sea ice habitats, and the subsequent influence of these environments on the life history strategies of the crustacean fauna. Sea ice is the dominant feature of both polar marine ecosystems, playing a central role in physical processes and providing an essential habitat for organisms ranging in size from viruses to whales. Similarities between the Arctic and Antarctic marine ecosystems include variable cover of sea ice over an annual cycle, a light regimen that can extend from months of total darkness to months of continuous light and a pronounced seasonality in primary production. Although there are many similarities, there are also major diVerences between the two regions: The Antarctic experiences greater seasonal change in its sea ice extent, much of the ice is over very deep water and more than 80% breaks out each year. In contrast, Arctic sea ice often covers comparatively shallow water, doubles in its extent on an annual cycle and the ice may persist for several decades. Crustaceans, particularly copepods and amphipods, are abundant in the sea ice zone at both poles, either living within the brine channel system of the ice-crystal matrix or inhabiting the ice–water interface. Many species associate with ice for only a part of their life cycle, while others appear entirely dependent upon it for reproduction and development. Although similarities exist between the two faunas, many diVerences are emerging. Most notable are the much higher abundance and biomass of Antarctic copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids, the high euphausiid biomass in Southern Ocean waters and the lack of any species that appear fully dependent on the ice. In the Arctic, the ice-associated fauna is dominated by amphipods. Calanoid copepods are not tightly associated with the ice, while harpacticoids and cyclopoids are abundant. Euphausiids are nearly absent from the high Arctic. Life history strategies are variable, although reproductive cycles and life spans are generally longer than those for temperate congeners. Species at both poles tend to be opportunistic feeders and periods of diapause or other reductions in metabolic expenditure are not uncommon." name="DC.description" /> <meta content="Elsevier" name="DC.publisher" /> <meta content="Southward, A.J." name="DC.contributor" /> <meta content="Sims, D.W." name="DC.contributor" /> <meta content="2006" name="DC.date" /> <meta content="Book Chapter" name="DC.type" /> <meta content="PeerReviewed" name="DC.type" /> <meta content="application/pdf" name="DC.format" /> <meta content="http://eprints.utas.edu.au/2164/1/ArndtSwadling_AMB2006.pdf" name="DC.identifier" /> <meta content="http://dx.doi.org/10.1016/S0065-2881(06)51004-1" name="DC.relation" /> <meta content="Arndt, Carolin E. and Swadling, Kerrie M. (2006) Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies. In: Advances in Marine Biology. . Elsevier, pp. 197-315." name="DC.identifier" /> <meta content="http://eprints.utas.edu.au/2164/" name="DC.relation" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/BibTeX/epprod-eprint-2164.bib" title="BibTeX" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/ContextObject/epprod-eprint-2164.xml" title="OpenURL ContextObject" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/ContextObject::Dissertation/epprod-eprint-2164.xml" title="OpenURL Dissertation" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/ContextObject::Journal/epprod-eprint-2164.xml" title="OpenURL Journal" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/DC/epprod-eprint-2164.txt" title="Dublin Core" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/DIDL/epprod-eprint-2164.xml" title="DIDL" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/EndNote/epprod-eprint-2164.enw" title="EndNote" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/HTML/epprod-eprint-2164.html" title="HTML Citation" type="text/html; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/METS/epprod-eprint-2164.xml" title="METS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/MODS/epprod-eprint-2164.xml" title="MODS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/RIS/epprod-eprint-2164.ris" title="Reference Manager" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/Refer/epprod-eprint-2164.refer" title="Refer" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/Simple/epprod-eprint-2164text" title="Simple Metadata" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/Text/epprod-eprint-2164.txt" title="ASCII Citation" type="text/plain; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/XML/epprod-eprint-2164.xml" title="EP3 XML" type="text/xml" /> </head> <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')"> <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div> <table width="795" border="0" cellspacing="0" cellpadding="0"> <tr> <td><script language="JavaScript1.2">mmLoadMenus();</script> <table border="0" cellpadding="0" cellspacing="0" width="795"> <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" --> <tr> <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td> </tr> <tr> <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td> <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td> <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td> <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td> </tr> <tr> <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td> <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td> <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td> <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td> <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td> <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td> <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td> <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td> <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td> <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td> </tr> <tr> <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td> <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td> </tr> </table></td> </tr> <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr> <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td> <td align="right" style="white-space: nowrap"> <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline"> <input class="ep_tm_searchbarbox" size="20" type="text" name="q" /> <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" /> <input type="hidden" name="_order" value="bytitle" /> <input type="hidden" name="basic_srchtype" value="ALL" /> <input type="hidden" name="_satisfyall" value="ALL" /> </form> </td> </tr></table></td></tr> <tr> <td class="toplinks"><!-- InstanceBeginEditable name="content" --> <div align="center"> <table width="720" class="ep_tm_main"><tr><td align="left"> <h1 class="ep_tm_pagetitle">Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies</h1> <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Arndt, Carolin E.</span> and <span class="person_name">Swadling, Kerrie M.</span> (2006) <xhtml:em>Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies.</xhtml:em> In: Advances in Marine Biology. . Elsevier, pp. 197-315.</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2164/1/ArndtSwadling_AMB2006.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2164/1/ArndtSwadling_AMB2006.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />2252Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2707" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1016/S0065-2881(06)51004-1">http://dx.doi.org/10.1016/S0065-2881(06)51004-1</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">This review concerns crustaceans that associate with sea ice. Particular emphasis is placed on comparing and contrasting the Arctic and Antarctic sea ice habitats, and the subsequent influence of these environments on the life history strategies of the crustacean fauna. Sea ice is the dominant feature of both polar marine ecosystems, playing a central role in physical processes and providing an essential habitat for organisms ranging in size from viruses to whales. Similarities between the Arctic and Antarctic marine ecosystems include variable cover of sea ice over an annual cycle, a light regimen that can extend from months of total darkness to months of continuous light and a pronounced seasonality in primary production. Although there are many similarities, there are also major diVerences between the two regions: The Antarctic experiences greater seasonal change in its sea ice extent, much of the ice is over very deep water and more than 80% breaks out each year. In contrast, Arctic sea ice often covers comparatively shallow water, doubles in its extent on an annual cycle and the ice may persist for several decades. Crustaceans, particularly copepods and amphipods, are abundant in the sea ice zone at both poles, either living within the brine channel system of the ice-crystal matrix or inhabiting the ice–water interface. Many species associate with ice for only a part of their life cycle, while others appear entirely dependent upon it for reproduction and development. Although similarities exist between the two faunas, many diVerences are emerging. Most notable are the much higher abundance and biomass of Antarctic copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids, the high euphausiid biomass in Southern Ocean waters and the lack of any species that appear fully dependent on the ice. In the Arctic, the ice-associated fauna is dominated by amphipods. Calanoid copepods are not tightly associated with the ice, while harpacticoids and cyclopoids are abundant. Euphausiids are nearly absent from the high Arctic. Life history strategies are variable, although reproductive cycles and life spans are generally longer than those for temperate congeners. Species at both poles tend to be opportunistic feeders and periods of diapause or other reductions in metabolic expenditure are not uncommon.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Book Chapter</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">The definitive version is available online at http://www.sciencedirect.com/</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/270702.html">270000 Biological Sciences > 270700 Ecology and Evolution > 270702 Marine and Estuarine Ecology (incl. Marine Ichthyology)</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2164</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Dr Kerrie Swadling</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">18 Oct 2007 14:00</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2164;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=2164">item control page</a></p> </td></tr></table> </div> <!-- InstanceEndEditable --></td> </tr> <tr> <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" --> <table width="795" border="0" align="left" cellpadding="0" class="footer"> <tr valign="top"> <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td> </tr> <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr> <tr valign="top"> <td width="68%" class="footer">Authorised by the University Librarian<br /> © University of Tasmania ABN 30 764 374 782<br /> <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td> <td width="32%"><div align="right"> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br /> </a></p> </div></td> </tr> <tr valign="top"> <td><p> </p></td> <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td> </tr> </table> <!-- #EndLibraryItem --> <div align="center"></div></td> </tr> </table> </body> </html>