Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2613.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Chlorine in submarine volcanic glasses from the eastern Manus basin</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Sun, W." name="eprints.creators_name" />
  14. <meta content="Binns, R.A." name="eprints.creators_name" />
  15. <meta content="Fan, A.C." name="eprints.creators_name" />
  16. <meta content="Kamenetsky, V.S." name="eprints.creators_name" />
  17. <meta content="Wysoczanski, R." name="eprints.creators_name" />
  18. <meta content="Wei, G.J." name="eprints.creators_name" />
  19. <meta content="Hu, Y.H." name="eprints.creators_name" />
  20. <meta content="Arculus, R.J." name="eprints.creators_name" />
  21. <meta name="eprints.creators_id" />
  22. <meta name="eprints.creators_id" />
  23. <meta name="eprints.creators_id" />
  24. <meta content="Dima.Kamenetsky@utas.edu.au" name="eprints.creators_id" />
  25. <meta name="eprints.creators_id" />
  26. <meta name="eprints.creators_id" />
  27. <meta name="eprints.creators_id" />
  28. <meta name="eprints.creators_id" />
  29. <meta content="article" name="eprints.type" />
  30. <meta content="2007-12-10 02:27:15" name="eprints.datestamp" />
  31. <meta content="2008-01-17T02:10:09Z" name="eprints.lastmod" />
  32. <meta content="show" name="eprints.metadata_visibility" />
  33. <meta content="Chlorine in submarine volcanic glasses from the eastern Manus basin" name="eprints.title" />
  34. <meta content="pub" name="eprints.ispublished" />
  35. <meta content="260300" name="eprints.subjects" />
  36. <meta content="260100" name="eprints.subjects" />
  37. <meta content="restricted" name="eprints.full_text_status" />
  38. <meta content="back-arc basin, papua-new-guinea, convergent-margin magmas, mantle-derived rocks, New Britain island-arc, laser ablation icp-ms, melt inclusions, glass, degassing, fractionation, lau basin, subduction zones, Pacmanus" name="eprints.keywords" />
  39. <meta content="The definitive version is available at http://www.sciencedirect.com
  40. " name="eprints.note" />
  41. <meta content="Submarine volcanic glasses from the eastern Manus Basin of Papua New Guinea, ranging from basalt to rhyodacite, clarify the geochemical behavior of Cl in arc-type magmas. For the Manus samples, Cl is well correlated with non-volatile highly incompatible trace elements, suggesting it was not highly volatile and discounting significant seawater contamination. The Cl partition coefficient is close to but slightly lower than that of Nb and K2O, a behavior similar to that in mid-ocean ridge basalts (MORB) and ocean island basalts (OIB). The similar incompatibilities of Cl and Nb imply that the Cl/Nb values of the eastern Manus Basin glasses reflect their magma source. For glasses from other west Pacific back-arc basins, Cl/Nb, Ba/Nb, and U/Nb increase towards the subduction trench, indicating increased contribution of a component enriched in Cl, Ba, and U, likely from subduction-released slab fluids. It is estimate that similar to 80% of the Cl in the Manus arc-type glasses was added directly from subducted slab-derived fluids. We have also modeled Cl behavior during magma evolution in general. Our results show that the behavior of Cl in magma is strongly influenced by pressure, initial H2O content, and the degree of magmatic fractionation. At early stages of magmatic evolution, for magmas with initial H2O content of < 4.0 wt%, Cl is highly incompatible under all pressures. By contrast, for more evolved magmas at moderately high pressure and high H2O contents, considerable amounts of Cl can be extracted from the magma once H2O saturation is reached. Accordingly, Cl is usually highly incompatible in MORB and OIB because of their low H2O contents and relatively low degrees of fractional crystallization. The behavior of Cl in arc magmas is more complicated, ranging from highly incompatible to compatible depending on H2O content and depth of magma chambers. The behavior of Cl in the eastern Manus Basin magmas is consistent with low H2O contents (1.1-1.7 wt%) and evolution at low pressures (< 0.1 GPa). Modeling results also indicate that Cl will behave differently in intrusive rocks compared to volcanic rocks because of the different pressures involved. This may have a strong influence on the mechanisms of ore genesis in these two tectonic settings." name="eprints.abstract" />
  42. <meta content="2007-03-15" name="eprints.date" />
  43. <meta content="published" name="eprints.date_type" />
  44. <meta content="Geochimica et Cosmochimica Acta" name="eprints.publication" />
  45. <meta content="71" name="eprints.volume" />
  46. <meta content="6" name="eprints.number" />
  47. <meta content="1542-1552" name="eprints.pagerange" />
  48. <meta content="10.1016/j.gca.2006.12.003" name="eprints.id_number" />
  49. <meta content="TRUE" name="eprints.refereed" />
  50. <meta content="0016-7037" name="eprints.issn" />
  51. <meta content="http://dx.doi.org/10.1016/j.gca.2006.12.003" name="eprints.official_url" />
  52. <meta content="Allen D. E., and Seyfried W. E. (2005) REE controls in ultramafic
  53. hosted MOR hydrothermal systems: an experimental study at
  54. elevated temperature and pressure. Geochim. Cosmochim. Acta
  55. 69(3), 675–683.
  56. Archibald S. M., Migdisov A. A., and Williams-Jones A. E. (2001)
  57. The stability of Au-chloride complexes in water vapor at
  58. elevated temperatures and pressures. Geochim. Cosmochim.
  59. Acta 65(23), 4413–4423.
  60. Ayers J. C., and Eggler D. H. (1995) Partitioning of elements
  61. between silicate melt and H2O–NaCl fluids at 1.5 and 2.0 GPa
  62. pressure—Implications for mantle metasomatism. Geochim.
  63. Cosmochim. Acta 59(20), 4237–4246.Bach W., Hegner E., and Erzinger J. (1998) Chemical fluxes in the
  64. Tonga subduction zone: evidence from the southern Lau Basin.
  65. Geophys. Res. Lett. 25(9), 1467–1470.
  66. Becker H., Jochum K. P., and Carlson R. W. (2000) Trace element
  67. fractionation during dehydration of eclogites from highpressure
  68. terranes and the implications for element fluxes in
  69. subduction zones. Chem. Geol. 163(1–4), 65–99.
  70. Binns R. A., Barriga F. J. A. S., and Miller D. J. (2002a) Anatomy
  71. of an active felsic-hosted hydrothermal system, eastern Manus
  72. Basin. In Proceeding of the Ocean Drilling Program. Initial
  73. Reports, 193.
  74. Binns R. A., McConachy T. F., Parr J. M., and Yeats C. J. (2002b)
  75. The PACMANUS Memoir (P2+). CSIRO Exploration and
  76. Mining, Report, 1032.
  77. Binns R. A., and Scott S. D. (1993) Actively forming polymetallic
  78. sulfide deposits associated with felsic volcanic rocks in the
  79. eastern Manus back-arc basin, Papua New Guinea. Econ. Geol.
  80. 88, 2226–2236.
  81. Bodnar R. J. (1992) Can we recognize magmatic fluid inclusions in
  82. fossil systems based on room-temperature phase relations and
  83. microthermometric behavior? Report of Geological Survey
  84. Japan 279, 26–30.
  85. Brenan J. M., Shaw H. F., Phinney D. L., and Ryerson F. J. (1994)
  86. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and
  87. Th—Implications for high-field strength element depletions in
  88. island arc basalts. Earth Planet. Sci. Lett. 128(3–4), 327–339.
  89. Brenan J. M., Shaw H. F., and Ryerson F. J. (1995a) Experimental
  90. evidence for the origin of lead enrichment in convergent margin
  91. magmas. Nature 378(6552), 54–56.
  92. Brenan J. M., Shaw H. F., Ryerson F. J., and Phinney D. L.
  93. (1995b) Mineral-aqueous fluid partitioning of trace elements at
  94. 900 degrees C and 2.0 GPa—Constraints on the trace element
  95. chemistry of mantle and deep-crustal fluids. Geochim. Cosmochim.
  96. Acta 59(16), 3331–3350.
  97. Brenan J. M., and Watson E. B. (1991) Partitioning of traceelements
  98. between olivine and aqueous fluids at High P-T
  99. conditions—Implications for the effect of fluid composition on
  100. trace-element transport. Earth Planet. Sci. Lett. 107(3–4), 672–
  101. 688.
  102. Burnham C. W. (1975) Water and magmas: a mixing model.
  103. Geochim. Cosmochim. Acta 39, 1077–1084.
  104. Cline J. S., and Bodnar R. J. (1991) Can economic porphyry
  105. copper mineralization be generated by a typical calc-alkaline
  106. melt. J. Geophys. Res.-Solid Earth Planets 96(B5), 8113–8126.
  107. Danyushevsky L. V., Falloon T. J., Sobolev A. V., Crawford A. J.,
  108. Carroll M., and Price R. C. (1993) The H2O content of basalt
  109. glasses from southwest Pacific back-arc basins. Earth Planet.
  110. Sci. Lett. 117(3–4), 347–362.
  111. Eggins S. M., Kinsley L. P. J., and Shelley J. M. G. (1998a)
  112. Deposition and element fractionation processes during atmospheric
  113. pressure laser sampling for analysis by ICP-MS. Appl.
  114. Surf. Sci. 129, 278–286.
  115. Eggins S. M., Rudnick R. L., and McDonough W. F. (1998b) The
  116. composition of peridotites and their minerals: a laser-ablation
  117. ICP-MS study. Earth Planet. Sci. Lett. 154(1–4), 53–71.
  118. Eggins S. M., and Shelley J. M. G. (2002) Compositional
  119. heterogeneity in NIST SRM 610-617 glasses. Geostandard.
  120. Newslett. 26(3), 269–286.
  121. Exon N. F., Stewart W. D., Sandy M. J., and Tiffin D. L. (1986)
  122. Geology and offshore petroleum prospects of the eastern New
  123. Ireland Basin, northeastern Papua New Guinea. BMR J. Austr.
  124. Geol. Geophys. 10, 39–51.
  125. Fu B., Xiao Y. L., Zheng Y. F., Touret J. L. R., van den Kerkhof
  126. A. M., and Hoefs J. (2000) Fluid inclusions in ultrahigh
  127. pressure metamorphic rocks from Shuanghe and Bixiling in
  128. Dabie Shan. Acta Petrol. Sin. 16(1), 119–126.
  129. Gammons C. H., Yu Y. M., and Williams-Jones A. E. (1997) The
  130. disproportionation of gold(I) chloride complexes at 25 to
  131. 200 C. Geochim. Cosmochim. Acta 61(10), 1971–1983.
  132. Harris D. M., and Anderson A. T. (1984) Volatiles H2O, CO2, and
  133. Cl in a subduction related basalt. Contrib. Mineral. Petrol.
  134. 87(2), 120–128.
  135. Hart S. R., and Staudigel H. (1982) The control of alkalies and
  136. uranium in sea water by ocean alteration. Earth Planet. Sci.
  137. Lett. 58, 202–212.
  138. Hauri E. (2002) SIMS analysis of volatiles in silicate glasses, 2:
  139. isotopes and abundances in Hawaiian melt inclusions. Chem.
  140. Geol. 183(1–4), 115–141.
  141. Herzarkhani A., Williams-Jones A. E., and Gammons C. H. (1999)
  142. Factors controlling copper solubility and chalcopyrite deposition
  143. in the Sungun porphyry copper deposit, Iran. Miner.
  144. Deposita 34(8), 770–783.
  145. Hofmann A. W. (2003) Sampling mantle heterogeneity through
  146. oceanic basalts: isotopes and trace elements. In Treatise of
  147. Geochemistry, (ed. R. Carlson). , vol. 2, pp. 61–101. Elsevier.
  148. Jochum K. P., and Hofmann A. W. (1997) Constraints on earth
  149. evolution from antimony in mantle-derived rocks. Chem. Geol.
  150. 139(1–4), 39–49.
  151. Jochum K. P., Hofmann A. W., and Seufert H. M. (1993) Tin in
  152. mantle-derived rocks—Constraints on earth evolution. Geochim.
  153. Cosmochim. Acta 57(15), 3585–3595.
  154. Kamenetsky V. S., Binns R. A., Gemmell J. B., Crawford A. J.,
  155. Mernagh T. P., Maas R., and Steele D. (2001) Parental basaltic
  156. melts and fluids in eastern Manus backarc basin; implications
  157. for hydrothermal mineralisation. Earth Planet. Sci. Lett. 184(3–
  158. 4), 685–702.
  159. Kamenetsky V. S., Crawford A. J., Eggins S. M., and Muehe R.
  160. (1997) Phenocryst and melt inclusion chemistry of near-axis
  161. seamounts, Valu Fa Ridge, Lau Basin; insight into mantle
  162. wedge melting and the addition of subduction components.
  163. Earth Planet. Sci. Lett. 151(3–4), 205–223.
  164. Kamenetsky V. S., Davidson P., Mernagh T. P., Crawford A. J.,
  165. Gemmell J. B., Portnyagin M. V., and Shinjo R. (2002) Fluid
  166. bubbles in melt inclusions and pillow-rim glasses: high-temperature
  167. precursors to hydrothermal fluids. Chem. Geol. 183(1–4),
  168. 349–364.
  169. Kent A. J. R., Clague D. A., Honda M., Stolper E. M., Hutcheon
  170. I. D., and Norman M. D. (1999a) Widespread assimilation of a
  171. seawater-derived component at Loihi Seamount, Hawaii. Geochim.
  172. Cosmochim. Acta 63(18), 2749–2761.
  173. Kent A. J. R., Norman M. D., Hutcheon I. D., and Stolper E. M.
  174. (1999b) Assimilation of seawater-derived components in an
  175. oceanic volcano: evidence from matrix glasses and glass
  176. inclusions from Loihi seamount, Hawaii. Chem. Geol. 156(1–
  177. 4), 299–319.
  178. Kent A. J. R., Peate D. W., Newman S., Stolper E. M., and Pearce
  179. J. A. (2002) Chlorine in submarine glasses from the Lau Basin:
  180. seawater contamination and constraints on the composition of
  181. slab-derived fluids. Earth Planet. Sci. Lett. 202(2), 361–377.
  182. Keppler H. (1996) Constraints from partitioning experiments on
  183. the composition of subduction-zone fluids. Nature 380(6571),
  184. 237–240.
  185. Keppler H., and Wyllie P. J. (1990) Role of fluids in transport and
  186. fractionation of uranium and thorium in magmatic processes.
  187. Nature 348(6301), 531–533.
  188. Keppler H., and Wyllie P. J. (1991) Partitioning of Cu, Sn, Mo, W,
  189. U, and Th between Melt and Aqueous Fluid in the Systems
  190. Haplogranite-H2O HCl and Haplogranite-H2O Hf. Contrib.
  191. Mineral. Petrol. 109(2), 139–150.
  192. Lassiter J. C., Hauri E. H., Nikogosian I. K., and Barsczus H. G.
  193. (2002) Chlorine-potassium variations in melt inclusions from
  194. Raivavae and Rapa, Austral Islands: constraints on chlorine
  195. 1550 W.D. Sun et al. / Geochimica et Cosmochimica Acta 71 (2007) 1542–1552recycling in the mantle and evidence for brine-induced melting
  196. of oceanic crust. Earth Planet. Sci. Lett. 202(3–4), 525–540.
  197. Lowenstern J. B. (1994) Chlorine, fluid immiscibility, and degassing
  198. in peralkaline magmas from Pantelleria, Italy. American Mineral.
  199. 79(3-4), 353–369.
  200. Magenheim A. J., Spivack A. J., Michael P. J., and Gieskes J. M.
  201. (1995) Chlorine stable-isotoep composition of the oceaniccrust:
  202. Implications for Earths distribution of chlorine. Earth
  203. Planet. Sci. Lett. 131(3–4), 427–432.
  204. McCulloch M. T., and Gamble A. J. (1991) Geochemical and
  205. geodynamical constraints on subduction zone magmatism.
  206. Earth Planet. Sci. Lett. 102(3–4), 358–374.
  207. McDonough W. F., and Sun S. S. (1995) The composition of the
  208. Earth. Chem. Geol. 120(3–4), 223–253.
  209. Michael P. J., and Cornell W. C. (1998) Influence of spreading rate
  210. and magma supply on crystallization and assimilation beneath
  211. mid-ocean ridges: Evidence from chlorine and major element
  212. chemistry of mid-ocean ridge basalts. J. Geophys. Res.-Solid
  213. Earth 103(B8), 18325–18356.
  214. Michael P. J., and Schilling J. G. (1989) Chlorine in mid-ocean
  215. ridge magmas: evidence for assimilation of seawater-influenced
  216. components. Geochim. Cosmochim. Acta 53, 3131–3143.
  217. Moss R., Scott S. D., and Binns R. A. (2001) Gold content of eastern
  218. Manus Basin volcanic rocks; implications for enrichment in
  219. associated hydrothermal precipitates. Econ. Geol. 96(1), 91–107.
  220. Pearce J. A., and Peate D. W. (1995) Tectonic implications of the
  221. composition of volcanic arc magmas. Ann. Rev. Earth Planet.
  222. Sci. 23, 251–285.
  223. Pearce N. J. G., Perkins W. T., Westgate J. A., Gorton M. P.,
  224. Jackson S. E., Neal C. R., and Chenery S. P. (1997) A
  225. compilation of new and published major and trace element data
  226. for NIST SRM 610 and NIST SRM 612 glass reference
  227. materials. Geostandard. Newsletter 21, 115–144.
  228. Peate D. W., Kokfelt T. F., Hawkesworth C. J., Van Calsteren P.
  229. M., Hergt J. M., and Pearce J. A. (2001) U-series isotope data
  230. on Lau Basin glasses: The role of subduction-related fluids
  231. during melt generation in back-arc basins. J. Petrol. 42(8),
  232. 1449–1470.
  233. Philippot P., Agrinier P., and Scambelluri M. (1998) Chlorine
  234. cycling during subduction of altered oceanic crust. Earth
  235. Planet. Sci. Lett. 161(1–4), 33–44.
  236. Saal A. E., Hauri E. H., Langmuir C. H., and Perfit M. R. (2002)
  237. Vapour undersaturation in primitive mid-ocean-ridge basalt
  238. and the volatile content of Earth’s upper mantle. Nature
  239. 419(6906), 451–455.
  240. Scambelluri M., and Philippot P. (2001) Deep fluids in subduction
  241. zones. Lithos 55(1–4), 213–227.
  242. Schilling J. G., Bergeron M. B., and Evans R. (1980) Halogens in
  243. the mantle beneath the North Atlantic. Phil. Trans. R. Soc.
  244. Lond. 297, 147–178.
  245. Schmidt M. W., and Poli S. (1998) Experimentally based water
  246. budgets for dehydrating slabs and consequences for arc magma
  247. generation. Earth Planet. Sci. Lett. 163(1–4), 361–379.
  248. Shinohara H., Iiyama J. T., and Matsuo S. (1989) Partition of
  249. chlorine compounds between silicate melt and hydrothermal
  250. solutions, I, Partition of NaCl-KCl. Geochim. Cosmochim. Acta
  251. 53, 2617–2630.
  252. Sinton J. M., Ford L. L., Chappell B. W., and McCulloch M. T.
  253. (2003) Magma genesis and mantle heterogeneity in the Manus
  254. back-arc basin, Papua New Guinea. J. Petrol. 44(1), 159–195.
  255. Sobolev A. V., and Chaussidon M. (1996) H2O concentrations in
  256. primary melts from supra-subduction zones and mid-ocean
  257. ridges: Implications for H2O storage and recycling in the
  258. mantle. Earth Planet. Sci. Lett. 137(1–4), 45–55.
  259. Straub, S. M., and Layne, G. D. (2003) Decoupling of fluids and
  260. fluid-mobile elements during shallow subduction: evidence from
  261. halogen-rich andesite melt inclusions from the Izu arc volcanic
  262. front. Geochem. Geophys. Geosys. 4, ISI:000184337300001.
  263. Stroncik N. A., and Haase K. M. (2004) Chlorine in oceanic
  264. intraplate basalts: Constraints on mantle sources and recycling
  265. processes. Geology 32(11), 945–948.
  266. Sun S. S., and McDonough W. F. (1989) Chemical and isotopic
  267. systematics of oceanic basalts; implications for mantle composition
  268. and processes. In Magmatism in The Ocean Basins., vol.
  269. 42, (eds. A.D. Saunders and M.J. Norry), pp. 313–345.
  270. Geological Society of London.
  271. Sun W., Bennett V. C., Eggins S. M., Arculus R. J., and Perfit M.
  272. (2003a) Rhenium systematics in submarine MORB and backarc
  273. basin glasses: laser ablation ICP-MS results. Chem. Geol.
  274. 196(1–4), 259–281.
  275. Sun W. D., Arculus R. J., Bennett V. C., Eggins S. M., and Binns
  276. R. A. (2003b) Evidence for rhenium enrichment in the mantle
  277. wedge from submarine arc-like volcanic glasses (Papua New
  278. Guinea). Geology 31(10), 845–848.
  279. Sun W. D., Arculus R. J., Kamenetsky V. S., and Binns R. A.
  280. (2004a) Release of gold-bearing fluids in convergent margin
  281. magmas prompted by magnetite crystallization. Nature
  282. 431(7011), 975–978.
  283. Sun W. D., Bennett V. C., and Kamenetsky V. S. (2004b) The
  284. mechanism of re enrichment in arc magmas: evidence from Lau
  285. Basin basaltic glasses and primitive melt inclusions. Earth
  286. Planet. Sci. Lett. 222(1), 101–114.
  287. Symonds R. B., Rose W. I., Bluth G. J. S., and Gerlach T. M.
  288. (1994) Volcanic gas studies—methods, results, and applications.
  289. In Volatiles in Magmas. , vol. 30, pp. 1–66. Mineralogical
  290. Society of America.
  291. Taylor B. (1995) Backarc Basins: Tectonics and magmatism.
  292. Plenum, New York, pp. 524.
  293. Taylor B., and Martinez F. (2003) Back-arc basin basalt systematics.
  294. Earth Planet. Sci. Lett. 210, 481–497.
  295. Tenthorey E., and Hermann J. (2004) Composition of fluids during
  296. serpentinite breakdown in subduction zones: evidence for
  297. limited boron mobility. Geology 32(10), 865–868.
  298. Wallace P. J. (2005) Volatiles in subduction zone magmas:
  299. concentrations and fluxes based on melt inclusion and volcanic
  300. gas data. J. Volcanol. Geotherm. Res. 140(1–3), 217–240.
  301. Webster J. D. (2004) The exsolution of magmatic hydrosaline
  302. chloride liquids. Chem. Geol. 210(1-4), 33–48.
  303. Webster J. D., Kinzler R. J., and Mathez E. A. (1999) Chloride and
  304. water solubility in basalt and andesite melts and implications
  305. for magmatic degassing. Geochim. Cosmochim. Acta 63(5), 729–
  306. 738.
  307. Woodhead J. D., and Brauns M. (2004) Current limitations to the
  308. understanding of Re–Os behaviour in subduction systems, with
  309. an example from New Britain. Earth Planet. Sci. Lett. 221(1–4),
  310. 309–323.
  311. Woodhead J. D., Eggins S. M., and Johnson R. W. (1998) Magma
  312. genesis in the New Britain island arc; further insights into the
  313. melting and mass transfer processes. J. Petrol. 39(9), 1641–1668.
  314. Woodhead J. D., and Johnson R. W. (1993) Isotopic and traceelement
  315. profiles across the New Britain island arc, Papua New
  316. Guinea. Contrib. Mineral. Petrol. 113, 479–491.
  317. Wysoczanski R., and Tani K. (2006) Spectroscopic FTIR imaging
  318. of water species in silicic volcanic glasses and melt inclusions:
  319. an example from the lzu-Bonin arc. J. Volcanol. Geotherm. Res.
  320. 156(3–4), 302–314.
  321. Xiao Y. L., Hoefs J., and Kronz A. (2005) Compositionally zoned
  322. Cl-rich amphiboles from North Dabie Shan, China: Monitor of
  323. high-pressure metamorphic fluid/rock interaction processes.
  324. Lithos 81(1–4), 279–295.
  325. Xiao Y. L., Hoefs J., van den Kerkhof A. M., Fiebig J., and Zheng
  326. Y. F. (2000) Fluid history of UHP metamorphism in Dabie
  327. Chlorine in submarine volcanic glasses from the Manus Basin 1551Shan, China: a fluid inclusion and oxygen isotope study on the
  328. coesite-bearing eclogite from Bixiling. Contrib. Mineral. Petrol.
  329. 139(1), 1–16.
  330. Xiao Y. L., Hoefs J., Van den Kerkhof A. M., Simon K., Fiebig J.,
  331. and Zheng Y. F. (2002) Fluid evolution during HP and UHP
  332. metamorphism in Dabie Shan, China: constraints from mineral
  333. chemistry, fluid inclusions and stable isotopes. J. Petrol. 43(8),
  334. 1505–1527.
  335. Xiao Z. F., Gammons C. H., and Williams-Jones A. E.
  336. (1998) Experimental study of copper(I) chloride complexing
  337. in hydrothermal solutions at 40 to 300 C and
  338. saturated water vapor pressure. Geochim. Cosmochim. Acta
  339. 62(17), 2949–2964.
  340. Xiong X. L., Adam J., and Green T. H. (2005) Rutile stability and
  341. rutile/melt HFSE partitioning during partial melting of hydrous
  342. basalt: implications for TTG genesis. Chem. Geol. 218(3–4),
  343. 339–359.
  344. Yang K. H., and Scott S. D. (1996) Possible contribution of a
  345. metal-rich magmatic fluid to a sea-floor hydrothermal system.
  346. Nature 383(6599), 420–423.
  347. Yang K. H., and Scott S. D. (2002) Magmatic degassing of
  348. volatiles and ore metals into a hydrothermal system on the
  349. modern sea floor of the eastern Manus back-arc basin, western
  350. Pacific. Econ. Geol. 97(5), 1079–1100.
  351. " name="eprints.referencetext" />
  352. <meta content="Sun, W. and Binns, R.A. and Fan, A.C. and Kamenetsky, V.S. and Wysoczanski, R. and Wei, G.J. and Hu, Y.H. and Arculus, R.J. (2007) Chlorine in submarine volcanic glasses from the eastern Manus basin. Geochimica et Cosmochimica Acta, 71 (6). pp. 1542-1552. ISSN 0016-7037" name="eprints.citation" />
  353. <meta content="http://eprints.utas.edu.au/2613/1/GCA-2007-Manus.pdf" name="eprints.document_url" />
  354. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  355. <meta content="Chlorine in submarine volcanic glasses from the eastern Manus basin" name="DC.title" />
  356. <meta content="Sun, W." name="DC.creator" />
  357. <meta content="Binns, R.A." name="DC.creator" />
  358. <meta content="Fan, A.C." name="DC.creator" />
  359. <meta content="Kamenetsky, V.S." name="DC.creator" />
  360. <meta content="Wysoczanski, R." name="DC.creator" />
  361. <meta content="Wei, G.J." name="DC.creator" />
  362. <meta content="Hu, Y.H." name="DC.creator" />
  363. <meta content="Arculus, R.J." name="DC.creator" />
  364. <meta content="260300 Geochemistry" name="DC.subject" />
  365. <meta content="260100 Geology" name="DC.subject" />
  366. <meta content="Submarine volcanic glasses from the eastern Manus Basin of Papua New Guinea, ranging from basalt to rhyodacite, clarify the geochemical behavior of Cl in arc-type magmas. For the Manus samples, Cl is well correlated with non-volatile highly incompatible trace elements, suggesting it was not highly volatile and discounting significant seawater contamination. The Cl partition coefficient is close to but slightly lower than that of Nb and K2O, a behavior similar to that in mid-ocean ridge basalts (MORB) and ocean island basalts (OIB). The similar incompatibilities of Cl and Nb imply that the Cl/Nb values of the eastern Manus Basin glasses reflect their magma source. For glasses from other west Pacific back-arc basins, Cl/Nb, Ba/Nb, and U/Nb increase towards the subduction trench, indicating increased contribution of a component enriched in Cl, Ba, and U, likely from subduction-released slab fluids. It is estimate that similar to 80% of the Cl in the Manus arc-type glasses was added directly from subducted slab-derived fluids. We have also modeled Cl behavior during magma evolution in general. Our results show that the behavior of Cl in magma is strongly influenced by pressure, initial H2O content, and the degree of magmatic fractionation. At early stages of magmatic evolution, for magmas with initial H2O content of < 4.0 wt%, Cl is highly incompatible under all pressures. By contrast, for more evolved magmas at moderately high pressure and high H2O contents, considerable amounts of Cl can be extracted from the magma once H2O saturation is reached. Accordingly, Cl is usually highly incompatible in MORB and OIB because of their low H2O contents and relatively low degrees of fractional crystallization. The behavior of Cl in arc magmas is more complicated, ranging from highly incompatible to compatible depending on H2O content and depth of magma chambers. The behavior of Cl in the eastern Manus Basin magmas is consistent with low H2O contents (1.1-1.7 wt%) and evolution at low pressures (< 0.1 GPa). Modeling results also indicate that Cl will behave differently in intrusive rocks compared to volcanic rocks because of the different pressures involved. This may have a strong influence on the mechanisms of ore genesis in these two tectonic settings." name="DC.description" />
  367. <meta content="2007-03-15" name="DC.date" />
  368. <meta content="Article" name="DC.type" />
  369. <meta content="PeerReviewed" name="DC.type" />
  370. <meta content="application/pdf" name="DC.format" />
  371. <meta content="http://eprints.utas.edu.au/2613/1/GCA-2007-Manus.pdf" name="DC.identifier" />
  372. <meta content="http://dx.doi.org/10.1016/j.gca.2006.12.003" name="DC.relation" />
  373. <meta content="Sun, W. and Binns, R.A. and Fan, A.C. and Kamenetsky, V.S. and Wysoczanski, R. and Wei, G.J. and Hu, Y.H. and Arculus, R.J. (2007) Chlorine in submarine volcanic glasses from the eastern Manus basin. Geochimica et Cosmochimica Acta, 71 (6). pp. 1542-1552. ISSN 0016-7037" name="DC.identifier" />
  374. <meta content="http://eprints.utas.edu.au/2613/" name="DC.relation" />
  375. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/BibTeX/epprod-eprint-2613.bib" title="BibTeX" type="text/plain" />
  376. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/ContextObject/epprod-eprint-2613.xml" title="OpenURL ContextObject" type="text/xml" />
  377. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/ContextObject::Dissertation/epprod-eprint-2613.xml" title="OpenURL Dissertation" type="text/xml" />
  378. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/ContextObject::Journal/epprod-eprint-2613.xml" title="OpenURL Journal" type="text/xml" />
  379. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/DC/epprod-eprint-2613.txt" title="Dublin Core" type="text/plain" />
  380. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/DIDL/epprod-eprint-2613.xml" title="DIDL" type="text/xml" />
  381. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/EndNote/epprod-eprint-2613.enw" title="EndNote" type="text/plain" />
  382. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/HTML/epprod-eprint-2613.html" title="HTML Citation" type="text/html; charset=utf-8" />
  383. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/METS/epprod-eprint-2613.xml" title="METS" type="text/xml" />
  384. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/MODS/epprod-eprint-2613.xml" title="MODS" type="text/xml" />
  385. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/RIS/epprod-eprint-2613.ris" title="Reference Manager" type="text/plain" />
  386. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/Refer/epprod-eprint-2613.refer" title="Refer" type="text/plain" />
  387. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/Simple/epprod-eprint-2613text" title="Simple Metadata" type="text/plain" />
  388. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/Text/epprod-eprint-2613.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  389. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2613/XML/epprod-eprint-2613.xml" title="EP3 XML" type="text/xml" />
  390.  
  391. </head>
  392. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  393. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  394.  
  395.  
  396.  
  397.  
  398. <table width="795" border="0" cellspacing="0" cellpadding="0">
  399. <tr>
  400. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  401. <table border="0" cellpadding="0" cellspacing="0" width="795">
  402. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  403. <tr>
  404. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  405. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  406. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  407. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  408. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  409. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  410. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  411. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  412. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  413. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  414. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  415. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  416. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  417. </tr>
  418. <tr>
  419. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  420. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  421. </tr>
  422. <tr>
  423. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  424. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  425. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  426. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  427. </tr>
  428. <tr>
  429. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  430. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  431. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  432. </tr>
  433. <tr>
  434. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  435. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  436. </tr>
  437. <tr>
  438. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  439. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  440. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  441. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  442. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  443. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  444. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  445. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  446. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  447. </tr>
  448. <tr>
  449. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  450. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  451. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  452. </tr>
  453. <tr>
  454. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  455. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  456. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  457. </tr>
  458. </table></td>
  459. </tr>
  460. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  461. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  462. <td align="right" style="white-space: nowrap">
  463. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  464. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  465. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  466. <input type="hidden" name="_order" value="bytitle" />
  467. <input type="hidden" name="basic_srchtype" value="ALL" />
  468. <input type="hidden" name="_satisfyall" value="ALL" />
  469. </form>
  470. </td>
  471. </tr></table></td></tr>
  472. <tr>
  473. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  474.  
  475.  
  476. <div align="center">
  477. <table width="720" class="ep_tm_main"><tr><td align="left">
  478. <h1 class="ep_tm_pagetitle">Chlorine in submarine volcanic glasses from the eastern Manus basin</h1>
  479. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Sun, W.</span> and <span class="person_name">Binns, R.A.</span> and <span class="person_name">Fan, A.C.</span> and <span class="person_name">Kamenetsky, V.S.</span> and <span class="person_name">Wysoczanski, R.</span> and <span class="person_name">Wei, G.J.</span> and <span class="person_name">Hu, Y.H.</span> and <span class="person_name">Arculus, R.J.</span> (2007) <xhtml:em>Chlorine in submarine volcanic glasses from the eastern Manus basin.</xhtml:em> Geochimica et Cosmochimica Acta, 71 (6). pp. 1542-1552. ISSN 0016-7037</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2613/1/GCA-2007-Manus.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" border="0" class="ep_doc_icon" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2613/1/GCA-2007-Manus.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />348Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input value="3422" name="docid" accept-charset="utf-8" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1016/j.gca.2006.12.003">http://dx.doi.org/10.1016/j.gca.2006.12.003</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Submarine volcanic glasses from the eastern Manus Basin of Papua New Guinea, ranging from basalt to rhyodacite, clarify the geochemical behavior of Cl in arc-type magmas. For the Manus samples, Cl is well correlated with non-volatile highly incompatible trace elements, suggesting it was not highly volatile and discounting significant seawater contamination. The Cl partition coefficient is close to but slightly lower than that of Nb and K2O, a behavior similar to that in mid-ocean ridge basalts (MORB) and ocean island basalts (OIB). The similar incompatibilities of Cl and Nb imply that the Cl/Nb values of the eastern Manus Basin glasses reflect their magma source. For glasses from other west Pacific back-arc basins, Cl/Nb, Ba/Nb, and U/Nb increase towards the subduction trench, indicating increased contribution of a component enriched in Cl, Ba, and U, likely from subduction-released slab fluids. It is estimate that similar to 80% of the Cl in the Manus arc-type glasses was added directly from subducted slab-derived fluids. We have also modeled Cl behavior during magma evolution in general. Our results show that the behavior of Cl in magma is strongly influenced by pressure, initial H2O content, and the degree of magmatic fractionation. At early stages of magmatic evolution, for magmas with initial H2O content of &lt; 4.0 wt%, Cl is highly incompatible under all pressures. By contrast, for more evolved magmas at moderately high pressure and high H2O contents, considerable amounts of Cl can be extracted from the magma once H2O saturation is reached. Accordingly, Cl is usually highly incompatible in MORB and OIB because of their low H2O contents and relatively low degrees of fractional crystallization. The behavior of Cl in arc magmas is more complicated, ranging from highly incompatible to compatible depending on H2O content and depth of magma chambers. The behavior of Cl in the eastern Manus Basin magmas is consistent with low H2O contents (1.1-1.7 wt%) and evolution at low pressures (&lt; 0.1 GPa). Modeling results also indicate that Cl will behave differently in intrusive rocks compared to volcanic rocks because of the different pressures involved. This may have a strong influence on the mechanisms of ore genesis in these two tectonic settings.</p></div><table style="margin-bottom: 1em" border="0" cellpadding="3" class="not_ep_block"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">The definitive version is available at http://www.sciencedirect.com&#13;
  480. </td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">back-arc basin, papua-new-guinea, convergent-margin magmas, mantle-derived rocks, New Britain island-arc, laser ablation icp-ms, melt inclusions, glass, degassing, fractionation, lau basin, subduction zones, Pacmanus</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260300.html">260000 Earth Sciences &gt; 260300 Geochemistry</a><br /><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">Collections:</th><td valign="top" class="ep_row">UNSPECIFIED</td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2613</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Prof Vadim Kamenetsky</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">10 Dec 2007 13:27</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">17 Jan 2008 13:10</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2613;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2613">item control page</a></p>
  481. </td></tr></table>
  482. </div>
  483.  
  484.  
  485.  
  486. <!-- InstanceEndEditable --></td>
  487. </tr>
  488. <tr>
  489. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  490. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  491. <tr valign="top">
  492. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  493. </tr>
  494. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  495. <tr valign="top">
  496. <td width="68%" class="footer">Authorised by the University Librarian<br />
  497. © University of Tasmania ABN 30 764 374 782<br />
  498. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  499. <td width="32%"><div align="right">
  500. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  501. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  502. </a></p>
  503. </div></td>
  504. </tr>
  505. <tr valign="top">
  506. <td><p>  </p></td>
  507. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  508. </tr>
  509. </table>
  510. <!-- #EndLibraryItem -->
  511. <div align="center"></div></td>
  512. </tr>
  513. </table>
  514.  
  515. </body>
  516. </html>