Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 793.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
  <head>
    <title>UTas ePrints - An Incremental Learning Method for Data Mining from Large Databases</title>
    <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
    <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
    <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
    <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
    <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
    <link rel="Top" href="http://eprints.utas.edu.au/" />
    <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
    <meta content="Ling, Tristan Ronald" name="eprints.creators_name" />
<meta content="trling@postoffice.utas.edu.au" name="eprints.creators_id" />
<meta content="thesis" name="eprints.type" />
<meta content="2007-02-22" name="eprints.datestamp" />
<meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
<meta content="show" name="eprints.metadata_visibility" />
<meta content="An Incremental Learning Method for Data Mining from Large Databases" name="eprints.title" />
<meta content="unpub" name="eprints.ispublished" />
<meta content="280199" name="eprints.subjects" />
<meta content="280213" name="eprints.subjects" />
<meta content="280205" name="eprints.subjects" />
<meta content="public" name="eprints.full_text_status" />
<meta content="data mining, incremental learning, artificial intelligence, large databases" name="eprints.keywords" />
<meta content="Knowledge Discovery techniques seek to find new information about a domain
through a combination of existing domain knowledge and data examples from the
domain. These techniques can either be manually performed by an expert, or
automated using software algorithms (Machine Learning). However some domains,
such as the clinical field of Lung Function testing, contain volumes of data too vast
and detailed for manual analysis to be effective, and existing knowledge too complex
for Machine Learning algorithms to be able to adequately discover relevant
knowledge. In many cases this data is also unclassified, with no previous analysis
having been performed. A better approach for these domains might be to involve a
human expert, taking advantage of their expertise to guide the process, and to use
Machine Learning techniques to assist the expert in discovering new and meaningful
relationships in the data. It is hypothesised that Knowledge Acquisition methods
would provide a strong basis for such a Knowledge Discovery method, particularly
methods which can provide incremental verification and validation of knowledge as
it is obtained. This study examines how the MCRDR (Multiple Classification Ripple-
Down Rules) Knowledge Acquisition process can be adapted to develop a new
Knowledge Discovery method, Exposed MCRDR, and tests this method in the
domain of Lung Function. Preliminary results suggest that the EMCRDR method can
be successfully applied to discover new knowledge in a complex domain, and reveal
many potential areas of study and development for the MCRDR method." name="eprints.abstract" />
<meta content="2006-11" name="eprints.date" />
<meta content="published" name="eprints.date_type" />
<meta content="89" name="eprints.pages" />
<meta content="University of Tasmania" name="eprints.institution" />
<meta content="School of Computing" name="eprints.department" />
<meta content="honours" name="eprints.thesis_type" />
<meta content="Aamodt, A &amp; Plaza, E 1994, 'Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches', AI Communications, vol. 7, no. 1, pp. 33-59.
Aaron, S, Dales, R &amp; Cardinal, P 1999, How Accurate Is Spirometry at Predicting Restrictive
Pulmonary Impairment?*.
Abe, H &amp; Yamaguchi, T 2005, 'Implementing an Integrated Time-Series Data Mining
Environment - A Case Study of Medical KDD on Chronic Hepatitis', paper presented
to First International Conference on Complex Medical Engineering (CME2005),
Takamatsu, Kagawa, Japan.
Aha, DW 1991, 'Case-Based Learning Algorithms', paper presented to Proceedings of the
DARPA Case-Based Reasoning Workshop, Washington D.C.
Bachant, J &amp; McDermott, J 1984, 'RI Revisited: Four Years in the Trenches', AI Magazine,
vol. 5, no. 3, pp. 21-32.
Barker, V, O'Connor, D, Bachant, J &amp; Soloway, E 1989, 'Expert systems for configuration at
Digital: XCON and beyond', Communications of the ACM, vol. 32, no. 3, pp. 298-
318.
Bindoff, IK 2005, 'An Intelligent Decision Support System for Automated Medication Review',
University of Tasmania.
Buchanan, B &amp; Shortliffe, E 1984, Rule-based expert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project, Addison-Wesley.
Buchanan, B, Barstow, D, Bechtal, R, Bennett, J, Clancey, W, Kulikowski, C, Mitchell, T &amp;
Waterman, D 1983, 'Constructing an expert system', Building Expert Systems.
Catlett, J 1992, 'Ripple down rules as a mediating representation in interactive induction',
paper presented to Proceedings of the Second Japanese Knowledge Acquisition for
Knowledge-Based Systems Workshop, Kobe, Japan, Nov 9-13.
Chi, RH &amp; Kiang, MY 1991, 'An integrated approach of rule-based and case-based
reasoning for decision support', in Proceedings of the 19th annual conference on
Computer Science, ACM Press, San Antonio, Texas, United States, pp. 255-67.
Clancey, WJ 1984, 'Knowledge acquisition for classification expert systems', in Proceedings
of the 1984 annual conference of the ACM on The fifth generation challenge, ACM
Press, pp. 11-4.
---- 1993, 'Situated action: A neuropsychological interpretation (Response to Vera and
Simon)', Cognitive Science, vol. 17, no. 1, pp. 87-116.
Clerkin, P, Cunningham, P &amp; Hayes, C 2001, 'Ontology Discovery for the Semantic Web
Using Hierarchical Clustering', Semantic Web Mining Workshop at ECML/PKDD-
2001, September, vol. 3.
Compton, P &amp; Jansen, R 1989, 'A philosophical basis for knowledge acquisition', paper
presented to European Knowledge Acquisition for Knowledge-Based Systems,
Paris.
Compton, P &amp; Edwards, G 1994, 'A 2000 Rule Expert System Without a Knowledge
Engineer', paper presented to Proceedings of the 8th AAAI-Sponsored Ban
Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada.
Compton, P, Cao, T &amp; Kerr, J 2004, 'Generalising Incremental Knowledge Acquisition', paper
presented to Pacific Rim Knowledge Acquisition Workshop, Auckland, 9th - 10th
August.
Compton, P, Kang, B, Preston, P &amp; Mulholland, M 1993, 'Knowledge Acquisition without
Analysis', paper presented to Knowledge Acquisition for Knowledge-Based Systems,
Springer Verlag.
Compton, P, Edwards, G, Kang, B, Lazarus, L, Malor, R, Preston, P &amp; Srinivasan, A 1992,
'Ripple down rules: Turning knowledge acquisition into knowledge maintenance.'
Artificial Intelligence in Medicine, vol. 4, no. 6, pp. 463-75.
D P Johns, P, FANZSRS 2006, to T Ling, July 2006.
Dazeley, R &amp; Kang, B 2004, 'An Online Classification and Prediction Hybrid System for
Knowledge Discovery in Databases', paper presented to The 2nd International
Conference on Artificial Intelligence in Science and Technology, Hobart, Australia.
72
Edwards, G, Compton, P, Malor, R, Srinivasan, A &amp; Lazarus, L 1993, 'PEIRS: a pathologistmaintained
expert system for the interpretation of chemical pathology reports',
Pathology, no. 25, pp. 27-34.
Feigenbaum, EA 1977, The art of artificial intelligence: I. Themes and case studies of
knowledge engineering, Stanford University.
Féret, M &amp; Glasgow, J 1997, 'Combining Case-Based and Model-Based Reasoning for the
Diagnosis of Complex Devices', Applied Intelligence, vol. 7, no. 1, pp. 57-78.
Ferguson, G, Enright, P, Buist, A &amp; Higgins, M 2000, Office Spirometry for Lung Health
Assessment in Adults* A Consensus Statement From the National Lung Health
Education Program.
Frawley, W, Piatetsky-Shapiro, G &amp; Matheus, C 1992, 'Knowledge Discovery in Databases:
An Overview', AI Magazine, vol. 13, no. 3, pp. 57-70.
Gaines, B &amp; Boose, J 1988, Knowledge Acquisition for Knowledge-Based Systems, vol. 1,
Academic Press, Inc., Orlando, FL, USA.
Gaines, B &amp; Compton, P 1992, 'Induction of Ripple Down Rules', paper presented to
Proceedings of the 5th Australian Conference on Artical Intelligence, Hobart,
Australia.
Gaines, BR 1993, 'Modeling and Extending Expertise', in Proceedings of the 7th European
Workshop on Knowledge Acquisition for Knowledge-Based Systems, Springer-
Verlag, pp. 1-22.
Gerber, A, Glynn, E, MacDonald, A, Lawley, M &amp; Raymond, K 2004, 'Modelling for
Knowledge Discovery', paper presented to Workshop on Model-driven Evolution of
Legacy Systems (MELS).
Glady, C, Aaron, S, Lunau, M, Clinch, J &amp; Dales, R 2003, A Spirometry-Based Algorithm To
Direct Lung Function Testing in the Pulmonary Function Laboratory*.
Goebel, M &amp; Gruenwald, L 1999, 'A survey of data mining and knowledge discovery software
tools', SIGKDD Explor. Newsl., vol. 1, no. 1, pp. 20-33.
Goldberg, DE &amp; Holland, JH 1988, 'Genetic Algorithms and Machine Learning', Machine
Learning, vol. V3, no. 2, pp. 95-9.
Golding, A &amp; Rosenbloom, P 1996, 'Improving accuracy by combining rule-based and casebased
reasoning', Artificial Intelligence, vol. 87, no. 1, pp. 215-54.
Grefenstette, J, Ramsey, C &amp; Schultz, A 1990, 'Learning sequential decision rules using
simulation models and competition', Machine Learning, vol. 5, no. 4, pp. 355-81.
Hall, M &amp; Smith, L 1998, 'Practical feature subset selection for machine learning', paper
presented to Proceedings of the 21st Australasian Computer Science Conference.
Hand, D &amp; Vinciotti, V 2003, 'Choosing k for two-class nearest neighbour classifiers with
unbalanced classes', Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1555-62.
Hong, T-P, Wang, T-T, Wang, S-L &amp; Chien, B-C 2000, 'Learning a coverage set of maximally
general fuzzy rules by rough sets', Expert Systems with Applications, vol. 19, no. 2,
pp. 97-103.
Hughes, D &amp; Empey, D 1981, Lung Function for the Clinician, Academic Press Grune and
Stratton, London.
Ihrig, L &amp; Kambhampati, S 1995, 'An Explanation-Based Approach to Improve Retrieval in
Case-Based Planning', paper presented to European Workshop on Planning
(EWSP-95).
Kang, B &amp; Compton, P 1992, 'Knowledge Acquisition in Context: the Multiple Classification
Problem', paper presented to Proceedings of the Pacific Rim International
Conference on Artificial Intelligence, Seoul.
Kang, B, Compton, P &amp; Preston, P 1995, 'Multiple Classification Ripple Down Rules:
Evaluation and Possibilities', paper presented to Proceedings 9th Banff Knowledge
Acquisition for Knowledge Based Systems Workshop, Banff, Feb 26 - March 3.
---- 1998, 'Simulated Expert Evaluation of Multiple Classification Ripple Down Rules', paper
presented to 11th Banff knowledge acqusition for knowledge-based systems
workshop, University of Calgary.
Kang, B, Yoshida, K, Motoda, H &amp; Compton, P 1997, 'Help desk system with intelligent
interface', Applied Artificial Intelligence, vol. 11, no. 7-8, pp. 611-31.
Kolodner, J 1991, 'Improving Human Decision Making through Case-Based Decision Aiding',
AI Magazine, vol. 12, no. 2, pp. 52-68.
73
Kowalski, A 1991, 'Case-based reasoning and the deep structure approach to knowledge
representation', in Proceedings of the 3rd international conference on Artificial
intelligence and law, ACM Press, Oxford, England, pp. 21-30.
Kurniawati, R, Jin, J &amp; Shepherd, J 1998, 'Efficient nearest-neighbour searches using
weighted euclidean metrics', Proceedings of the 16th British National Conferenc on
Databases: Advances in Databases, pp. 64-76.
Laszlo, G 1994, Pulmonary FunctionA Guide for Clinicians, Cambridge University Press,
Cambridge.
Leondes, C 2002, Expert Systems, vol. 4, 6 vols., Academic Press, San Diego.
Liou, YI 1990, 'Knowledge acquisition: issues, techniques, and methodology', in Proceedings
of the 1990 ACM SIGBDP conference on Trends and directions in expert systems,
ACM Press, Orlando, Florida, United States, pp. 212-36.
Manago, M, Althoff, K, Auriol, E, Traphoner, R, Stefan, W, Conruyt, N &amp; Maurer, F 1993,
'Induction and Reasoning from Cases', paper presented to First European Workshop
on Case-Based Reasoning, Kaiserslautern, Germany.
MedGraphics Pulmonary Consult™ Software, 2006, Medical Graphics Corporation, viewed
10/13/2006 2006, <http://www.medgraphics.com/datasheet_pconsult.html>.
Miller, A 1987, Pulmonary Function Tests, Grune and Stratton, Orlando.
Mitchell, T 1997, 'Artificial Neural Networks', in T Mitchell (ed.), Machine Learning, McGraw-
Hill, pp. 82-112.
Oswald, H, Phelan, P, Lanigan, A, Hibbert, M, Carlin, J, Bowes, G &amp; Olinsky, A 1997,
'Childhood asthma and lung function in mid-adult life.' Pediatr Pulmonol, vol. 23, no.
1, pp. 14-20.
Paris, C &amp; Gil, Y 1993, 'EXPECT: Intelligent Support for Knowledge Base Refinement', in
Proceedings of the 7th European Workshop on Knowledge Acquisition for
Knowledge-Based Systems, Springer-Verlag, pp. 220-36.
Pribor, H 1989, 'Expert systems in laboratory medicine: A practical consultative application',
Journal of Medical Systems, vol. 13, no. 2, pp. 103-9.
Punjabi, N 1998, 'Correction of single-breath helium lung volumes in patients with airflow
obstruction', Chest, vol. 114, no. 3, pp. 907-18.
Quinlan, J 1986, 'Induction of decision trees', Machine Learning, vol. 1, no. 1, pp. 81-106.
---- 1993, C4.5: Programs for Machine Learning, vol. 1, 1 vols., Morgan Kaufmann
Publishers Inc., Sydney.
---- 1996, 'Bagging, boosting, and C4. 5', paper presented to Proceedings of the Thirteenth
National Conference on Artificial Intelligence.
Quinlan, JR 1987, 'Simplifying decision trees', Int. J. Man-Mach. Stud., vol. 27, no. 3, pp.
221-34.
Richards, D &amp; Compton, P 1997, 'Combining Formal Concept Analysis and Ripple Down
Rules to Support the Reuse of Knowledge', paper presented to Proceedings
Software Engineering Knowledge Engineering SEKE’97, Madrid, June 18-20.
Richards, D &amp; Busch, P 2003, 'Acquiring and Applying Contextualised Tacit Knowledge',
JOURNAL OF INFORMATION AND KNOWLEDGE MANAGEMENT, vol. 2, pp. 179-
90.
Richards, D, Chellen, V &amp; Compton, P 1996, 'The Reuse of Ripple Down Rule Knowledge
Bases: Using Machine Learning to Remove Repetition', paper presented to
Proceedings of Pacific Knowledge Acquisition Workshop PKAW’96.
Roberto J. Bayardo, J &amp; Agrawal, R 1999, 'Mining the most interesting rules', in Proceedings
of the fifth ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM Press, San Diego, California, United States, pp. 145-54.
Ruppel, GL 1994, Manual of Pulmonary Function Testing, 7 edn, Mosby, St Louis.
Sester, M 2000, 'Knowledge acquisition for the automatic interpretation of spatial data',
International Journal of Geographical Information Science, vol. 14, no. 1, pp. 1-24.
Shaheen, S, Sterne, J, Tucker, J &amp; Florey, C 1998, Birth weight, childhood lower respiratory
tract infection, and adult lung function, British Thoracic Society.
Singh, PK 2006, 'Knowledge-based Annotation of Medical Images', The University of New
South Wales.
Snow, M, Fallat, R, Tyler, W &amp; Hsu, S 1988, 'Pulmonary Consult: Concept to application of
an expert system', Journal of Clinical Engineering, vol. 13, no. 3.
74
Srinivasan, A, Compton, P, Malor, R, Edwards, G &amp; Lazarus, L 1992, 'Knowledge Acquisition
in Context for a Complex Domain', paper presented to Proceedings of the Fifth
European Knowledge Acquisition Workshop.
Swanney, M, Beckert, L, Frampton, C, Wallace, L, Jensen, R &amp; Crapo, R 2004, Validity of
the American Thoracic Society and Other Spirometric Algorithms Using FVC and
Forced Expiratory Volume at 6 s for Predicting a Reduced Total Lung Capacity*.
Towell, G &amp; Shavlik, J 1994, 'Knowledge-based artificial neural networks', Artificial
Intelligence, vol. 70, no. 1, pp. 119-65.
Towell, GG &amp; Shavlik, JW 1993, 'Extracting refined rules from knowledge-based neural
networks', Machine Learning, vol. V13, no. 1, pp. 71-101.
Tsumoto, S 1998, 'Modelling medical diagnostic rules based on rough sets', paper presented
to Proceedings of the First International Conference on Rough Sets and Current
Trends in Computing.
---- 2000, 'Automated discovery of positive and negative knowledge in clinical databases',
Engineering in Medicine and Biology Magazine, IEEE, vol. 19, no. 4, pp. 56-62.
---- 2004, 'Mining diagnostic rules from clinical databases using rough sets and medical
diagnostic model', Information Sciences, vol. 162, no. 2, pp. 65-80.
Watson, I &amp; Marir, F 1994, 'Case-Based Reasoning: A Review', The Knowledge Engineering
Review, vol. 9, no. 4, pp. 327-54.
Witten, IH &amp; Frank, E 2000, Data Mining: Practical Machine Learning Tools with Java
Implementations, Morgan Kaufmann Publishers, San Diego.
Yamaguti, T &amp; Kurematsu, M 1993, 'Legal knowledge acquisition using case-based
reasoning and model inference', in Proceedings of the 4th international conference
on Artificial intelligence and law, ACM Press, Amsterdam, The Netherlands, pp. 212-
7." name="eprints.referencetext" />
<meta content="Ling, Tristan Ronald (2006) An Incremental Learning Method for Data Mining from Large Databases. Honours thesis, University of Tasmania." name="eprints.citation" />
<meta content="http://eprints.utas.edu.au/793/1/trling_Honours_Thesis.pdf" name="eprints.document_url" />
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
<meta content="An Incremental Learning Method for Data Mining from Large Databases" name="DC.title" />
<meta content="Ling, Tristan Ronald" name="DC.creator" />
<meta content="280199 Information Systems not elsewhere classified" name="DC.subject" />
<meta content="280213 Other Artificial Intelligence" name="DC.subject" />
<meta content="280205 Text Processing" name="DC.subject" />
<meta content="Knowledge Discovery techniques seek to find new information about a domain
through a combination of existing domain knowledge and data examples from the
domain. These techniques can either be manually performed by an expert, or
automated using software algorithms (Machine Learning). However some domains,
such as the clinical field of Lung Function testing, contain volumes of data too vast
and detailed for manual analysis to be effective, and existing knowledge too complex
for Machine Learning algorithms to be able to adequately discover relevant
knowledge. In many cases this data is also unclassified, with no previous analysis
having been performed. A better approach for these domains might be to involve a
human expert, taking advantage of their expertise to guide the process, and to use
Machine Learning techniques to assist the expert in discovering new and meaningful
relationships in the data. It is hypothesised that Knowledge Acquisition methods
would provide a strong basis for such a Knowledge Discovery method, particularly
methods which can provide incremental verification and validation of knowledge as
it is obtained. This study examines how the MCRDR (Multiple Classification Ripple-
Down Rules) Knowledge Acquisition process can be adapted to develop a new
Knowledge Discovery method, Exposed MCRDR, and tests this method in the
domain of Lung Function. Preliminary results suggest that the EMCRDR method can
be successfully applied to discover new knowledge in a complex domain, and reveal
many potential areas of study and development for the MCRDR method." name="DC.description" />
<meta content="2006-11" name="DC.date" />
<meta content="Thesis" name="DC.type" />
<meta content="NonPeerReviewed" name="DC.type" />
<meta content="application/pdf" name="DC.format" />
<meta content="http://eprints.utas.edu.au/793/1/trling_Honours_Thesis.pdf" name="DC.identifier" />
<meta content="Ling, Tristan Ronald (2006) An Incremental Learning Method for Data Mining from Large Databases. Honours thesis, University of Tasmania." name="DC.identifier" />
<meta content="http://eprints.utas.edu.au/793/" name="DC.relation" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/BibTeX/epprod-eprint-793.bib" title="BibTeX" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/ContextObject/epprod-eprint-793.xml" title="OpenURL ContextObject" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/ContextObject::Dissertation/epprod-eprint-793.xml" title="OpenURL Dissertation" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/ContextObject::Journal/epprod-eprint-793.xml" title="OpenURL Journal" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/DC/epprod-eprint-793.txt" title="Dublin Core" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/DIDL/epprod-eprint-793.xml" title="DIDL" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/EndNote/epprod-eprint-793.enw" title="EndNote" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/HTML/epprod-eprint-793.html" title="HTML Citation" type="text/html; charset=utf-8" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/METS/epprod-eprint-793.xml" title="METS" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/MODS/epprod-eprint-793.xml" title="MODS" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/RIS/epprod-eprint-793.ris" title="Reference Manager" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/Refer/epprod-eprint-793.refer" title="Refer" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/Simple/epprod-eprint-793text" title="Simple Metadata" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/Text/epprod-eprint-793.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/793/XML/epprod-eprint-793.xml" title="EP3 XML" type="text/xml" />

  </head>
  <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
    
    <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>




<table width="795" border="0" cellspacing="0" cellpadding="0">
  <tr>
    <td><script language="JavaScript1.2">mmLoadMenus();</script>
      <table border="0" cellpadding="0" cellspacing="0" width="795">
        <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
        <tr>
          <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
        </tr>
        <tr>
          <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
          <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
          <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
          <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
          <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
          <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
          <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
          <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
          <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
          <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
          <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
        </tr>
        <tr>
          <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
          <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
        </tr>
        <tr>
          <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
          <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
        </tr>
      </table></td>
  </tr>
    <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
      <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
      <td align="right" style="white-space: nowrap">
        <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
          <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
          <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
          <input type="hidden" name="_order" value="bytitle" />
          <input type="hidden" name="basic_srchtype" value="ALL" />
          <input type="hidden" name="_satisfyall" value="ALL" />
        </form>
      </td>
    </tr></table></td></tr>
  <tr>
    <td class="toplinks"><!-- InstanceBeginEditable name="content" -->


<div align="center">
  
  <table width="720" class="ep_tm_main"><tr><td align="left">
    <h1 class="ep_tm_pagetitle">An Incremental Learning Method for Data Mining from Large Databases</h1>
    <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Ling, Tristan Ronald</span> (2006) <xhtml:em>An Incremental Learning Method for Data Mining from Large Databases.</xhtml:em> Honours thesis, University of Tasmania.</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_798' );" href="http://eprints.utas.edu.au/793/1/trling_Honours_Thesis.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_798' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_798"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/793/thumbnails/1/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/793/1/trling_Honours_Thesis.pdf"><span class="ep_document_citation">PDF (Complete thesis)</span></a> - Requires a PDF viewer<br />555Kb</td></tr></table><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Knowledge Discovery techniques seek to find new information about a domain
through a combination of existing domain knowledge and data examples from the
domain. These techniques can either be manually performed by an expert, or
automated using software algorithms (Machine Learning). However some domains,
such as the clinical field of Lung Function testing, contain volumes of data too vast
and detailed for manual analysis to be effective, and existing knowledge too complex
for Machine Learning algorithms to be able to adequately discover relevant
knowledge. In many cases this data is also unclassified, with no previous analysis
having been performed. A better approach for these domains might be to involve a
human expert, taking advantage of their expertise to guide the process, and to use
Machine Learning techniques to assist the expert in discovering new and meaningful
relationships in the data. It is hypothesised that Knowledge Acquisition methods
would provide a strong basis for such a Knowledge Discovery method, particularly
methods which can provide incremental verification and validation of knowledge as
it is obtained. This study examines how the MCRDR (Multiple Classification Ripple-
Down Rules) Knowledge Acquisition process can be adapted to develop a new
Knowledge Discovery method, Exposed MCRDR, and tests this method in the
domain of Lung Function. Preliminary results suggest that the EMCRDR method can
be successfully applied to discover new knowledge in a complex domain, and reveal
many potential areas of study and development for the MCRDR method.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Thesis (Honours)</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">data mining, incremental learning, artificial intelligence, large databases</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/280199.html">280000 Information, Computing and Communication Sciences &gt; 280100 Information Systems &gt; 280199 Information Systems not elsewhere classified</a><br /><a href="http://eprints.utas.edu.au/view/subjects/280213.html">280000 Information, Computing and Communication Sciences &gt; 280200 Artificial Intelligence and Signal and Image Processing &gt; 280213 Other Artificial Intelligence</a><br /><a href="http://eprints.utas.edu.au/view/subjects/280205.html">280000 Information, Computing and Communication Sciences &gt; 280200 Artificial Intelligence and Signal and Image Processing &gt; 280205 Text Processing</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">793</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Prof Arthur Sale</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">22 Feb 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=793;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=793">item control page</a></p>
  </td></tr></table>
</div>



    <!-- InstanceEndEditable --></td>
  </tr>
  <tr>
    <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
    <table width="795" border="0" align="left" cellpadding="0" class="footer">
  <tr valign="top">
<td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
</tr>
<tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
      <tr valign="top">
        <td width="68%" class="footer">Authorised by the University Librarian<br />
© University of Tasmania ABN 30 764 374 782<br />
      <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
        <td width="32%"><div align="right">
            <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
            <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
            </a></p>
        </div></td>
      </tr>
      <tr valign="top">
        <td><p>  </p></td>
        <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
      </tr>
    </table>
    <!-- #EndLibraryItem -->
    <div align="center"></div></td>
  </tr>
</table>

  </body>
</html>