Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 814.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Mean flow, eddy variability and energetics of the Subantarctic Front south of Australia</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Phillips, Helen E." name="eprints.creators_name" />
  14. <meta content="h.e.phillips@utas.edu.au" name="eprints.creators_id" />
  15. <meta content="thesis" name="eprints.type" />
  16. <meta content="2007-03-07" name="eprints.datestamp" />
  17. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  18. <meta content="show" name="eprints.metadata_visibility" />
  19. <meta content="Mean flow, eddy variability and energetics of the Subantarctic Front south of Australia" name="eprints.title" />
  20. <meta content="unpub" name="eprints.ispublished" />
  21. <meta content="260403" name="eprints.subjects" />
  22. <meta content="public" name="eprints.full_text_status" />
  23. <meta content="Antarctic Circumpolar Current
  24. Subantarctic Front
  25. current meter
  26. velocity
  27. heat
  28. momentum
  29. flux
  30. " name="eprints.keywords" />
  31. <meta content="This thesis describes the variability and mean flow of the Subantarctic Front
  32. (SAF) south of Australia using time series measurements of velocity and
  33. temperature from 1993 to 1995, and six hydrographic transects along WOCE
  34. line SR3 from Tasmania to Antarctica over the period 1991 to 1996. The SAF
  35. is the strongest jet of the Antarctic Circumpolar Current (ACC) south of
  36. Australia. The time series of velocity and temperature are only the third such
  37. dataset collected in the ACC and provide insight into the dynamics of this
  38. massive current and into the heat and momentum balances of the Southern
  39. Ocean.
  40. The SAF was found to be an energetic, meandering jet with vertically coherent
  41. fluctuations. These fluctuations varied on a timescale of 20 days, and had a
  42. typical amplitude of 30 cm/s at 1150 dbar. The analysis used a coordinate
  43. frame that rotated daily to be in alignment with the direction of flow. This
  44. allowed the mesoscale variability of the SAF to be isolated from variability due
  45. to meandering of the front and proved very successful for examining eddy
  46. fluxes. Vertically averaged cross-stream eddy heat flux was 11.3 kW/m^2
  47. poleward and was significantly different from zero at the 95% confidence level
  48. for fluctuations with periods between 2 and 90 days. Zonally integrated, this
  49. eddy heat flux (=0.9x10^15 W) is more than large enough to balance the heat
  50. lost south of the Polar Front and is as large as cross-SAF fluxes found in Drake
  51. Passage. Cross-stream eddy momentum fluxes were small and not significantly
  52. different from zero but were tending to decelerate the mean flow. A relationship
  53. between vertical motion and meander phase identified in the Gulf Stream was
  54. found to hold for the SAF. Eddy kinetic energy levels were similar to those in
  55. Drake Passage and southeast of New Zealand. Eddy potential energy was up to
  56. an order of magnitude larger than at the other ACC sites, most likely because
  57. meandering of the front is more common south of Australia. Baroclinic
  58. conversion was found to be the dominant mechanism by which eddies grow
  59. south of Australia. The typical time for the growth of an eddy is estimated to
  60. be 30 days, approximately half that in Drake Passage. This is consistent with
  61. observations from satellite altimetry which indicate that eddy energy is growing
  62. rapidly downstream of the Australian measurement site, while the eddy field in
  63. Drake Passage is mature.
  64. Mean cross-stream profiles of absolute and baroclinic velocity in the SAF at five
  65. current meter levels have been obtained from two streamwise profiling
  66. techniques using specific volume anomaly at 780 dbar as the cross-stream
  67. coordinate. One of the techniques, using hydrographic data to estimate the
  68. baroclinic velocity profile, is presented for the first time. The mean SAF
  69. velocity profile is composed of one central peak, reaching 52 and 34 cm/s at
  70. 420 dbar, absolute and baroclinic respectively, and several smaller peaks. The
  71. SAF flow is coherent at all levels, reaches the sea floor, and is at least 220 km
  72. wide. The cross-stream structure of baroclinic and absolute transport of the
  73. SAF has been characterized for the first time. The integrated mean transport is
  74. at least 116+/-10 x 10^6 m^3/s, of which approximately 14% is barotropic. The
  75. linear conditions for baroclinic and barotropic instability are satisfied at the
  76. array, consistent with the eddy growth rates calculated." name="eprints.abstract" />
  77. <meta content="2000" name="eprints.date" />
  78. <meta content="published" name="eprints.date_type" />
  79. <meta content="158" name="eprints.pages" />
  80. <meta content="University of Tasmania" name="eprints.institution" />
  81. <meta content="Institute of Antarctic and Southern Ocean Studies" name="eprints.department" />
  82. <meta content="phd" name="eprints.thesis_type" />
  83. <meta content="Belkin, I. M., 1990: Hydrological fronts of the Indian Subantarctic, in The Antarctic.
  84. The committee reports., vol. 29, pp. 119{128, Nauka, Moscow, in Russian with
  85. English abstract.
  86. Bindo, N. L., and J. A. Church, 1992: Warming of the water column in the southwest
  87. Pacic Ocean, Nature, 357, 59{62.
  88. Bower, A. S., and N. G. Hogg, 1996: Structure of the Gulf Stream and its recirculations
  89. at 55 W, J. Phys. Oceanogr., 26, 1002{1022.
  90. Bryden, H. L., 1979: Poleward heat ux and conversion of available potential energy in
  91. Drake Passage, J. Mar. Res., 37, 1{22.
  92. Bryden, H. L., and R. A. Heath, 1985: Energetic eddies at the northern edge of the
  93. Antarctic Circumpolar Current, Progr. Oceanogr., 14, 65{87.
  94. Bryden, H. L., 1980: Geostrophic vorticity balance in midocean, J. Geophys. Res.,
  95. 85, 2825{2828.
  96. Bryden, H. L., and R. D. Pillsbury, 1977: Variability of deep ow in the Drake Passage
  97. from year-long current measurements, J. Phys. Oceanogr., 7, 803{810.
  98. Cronin, M., K. L. Tracey and D. R. Watts, 1992: Mooring motion correction of the
  99. SYNOP Central Array current meter data., GSO Tech. Rep. 92-4, University of
  100. Rhode Island, Kingston, RI, 114pp.
  101. Cronin, M., and D. R. Watts, 1996: Eddy-mean ow interaction in the Gulf Stream at
  102. 68 W. Part I: Eddy energetics, J. Phys. Oceanogr., 26, 2107{2131.
  103. Deacon, G. E. R., 1937: The hydrology of the Southern Ocean, Discovery Reports,
  104. 15, 1{124, plates I{XLIV.
  105. deSzoeke, R. A., and M. D. Levine, 1981: The advective ux of heat by mean
  106. geostrophic motions in the Southern Ocean, Deep-Sea Res., 28A, 1057{1085.
  107. Donohue, K., E. Firing and S. Chen, 2000: Absolute geostrophic velocity within the
  108. Subantarctic Front in the Pacic Ocean, J. Geophys. Res., Submitted.
  109. Fandry, C. B., 1979: Baroclinic instability of the Antarctic Circumpolar Current in
  110. Drake Passage, Ocean Modelling, 22, 8{9.
  111. Georgi, D. T., and J. M. Toole, 1982: The Antarctic Circumpolar Current and the
  112. oceanic heat and freshwater budgets, J. Mar. Res., 40, Suppl., 183{197.
  113. Gill, A. E., 1968: A linear model of the Antarctic Circumpolar Current, J. Fluid
  114. Mech., 32, 465{488.
  115. Gill, A. E., J. S. Green and A. J. Simmons, 1974: Energy partition in the large-scale
  116. ocean circulation and the production of mid-ocean eddies, Deep-Sea Res., 21,
  117. 449{528.
  118. Gill, A. E., 1982: Atmosphere-Ocean Dynamics, Academic Press, First edition,
  119. 662pp.
  120. Gille, S. T., 1997: The Southern Ocean momentum balance: evidence for topographic
  121. eects from numerical model output and altimeter data, J. Phys. Oceanogr., 27,
  122. 2219{2232.
  123. Hall, M. M., 1986: Horizontal and vertical structure of the Gulf Stream velocity eld at
  124. 68 W, J. Phys. Oceanogr., 16, 1814{1828.
  125. Hall, M. M., 1989: Velocity and transport structure of the Kuroshio Extension at 35 N
  126. 152 E, J. Geophys. Res., 94(C10), 14445{14459.
  127. Hall, M. M., 1991: Energetics of the Kuroshio Extension at 35 N, 152 E, J. Phys.
  128. Oceanogr., 21, 958{975.
  129. Hall, M. M., and H. L. Bryden, 1985: Proling the Gulf Stream with a current meter
  130. mooring, Geophys. Res. Lett., 12(4), 203{206.
  131. Hogg, N. G., 1986: On the correction of temperature and velocity time series for
  132. mooring motion, J. Atmos. Ocean. Technol., 3, 204{214.
  133. Hogg, N. G., 1991: Mooring motion corrections revisited, J. Atmos. Ocean.
  134. Technol., 8, 289{295.
  135. Hogg, N. G., 1992: On the Gulf Stream transport between Cape Hatteras and the
  136. Grand Banks, Deep-Sea Res., 39(7/8), 1231{1246.
  137. Holton, J. R., 1992: An Introduction to Dynamic Meteorology, Academic Press,
  138. Third edition, 511pp.
  139. Inoue, M., 1985: Modal decomposition of the low-frequency currents and baroclinic
  140. instability at Drake Passage, J. Phys. Oceanogr., 15, 1157{1181.
  141. Jacobs, S. S., and D. T. Georgi, 1977: Observations on the southwest Indian/Antarctic
  142. Ocean, in A Voyage of Discovery, edited by M. Angel, pp. 43{84, Pergamon
  143. Press.
  144. Johns, W. E., T. J. Shay, J. M. Bane and D. R. Watts, 1995: Gulf Stream structure,
  145. transport and recirculation near 68 W, J. Geophys. Res., 100(C1), 817{838.
  146. Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar
  147. Current, Deep-Sea Res., 36, 35{53.
  148. Johnson, G. C., and A. H. Orsi, 1997: Southwest Pacic Ocean water-mass changes
  149. between 1968/69 and 1990/91, J. Climate, 10, 306{316.
  150. Le Traon, P. Y., F. Nadal and N. Ducet, 1998: An improved mapping method of
  151. multi-satellite altimeter data, J. Atmos. Ocean. Technol., 25, 522{534.
  152. Lindstrom, S. S., X. Qian and D. R. Watts, 1997: Vertical motion in the Gulf Stream
  153. and its relation to meanders, J. Geophys. Res., 102, 8485{8503.
  154. Lindstrom, S. S., and D. R. Watts, 1994: Vertical motion in the Gulf Stream near
  155. 68 W, J. Phys. Oceanogr., 24, 2321{2333.
  156. Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy uxes, J.
  157. Phys. Oceanogr., 11, 1677{1680.
  158. McCartney, M. S., 1976: The interaction of zonal currents with topography with
  159. applications to the Southern Ocean, Deep-Sea Res., 23, 413{427.
  160. McWilliams, J. C., W. R. Holland and J. H. S. Chow, 1978: A description of numerical
  161. Antarctic Circumpolar Currents, Dyn. Atmos. Oceans, 2, 213{291.
  162. Morrow, R., R. Coleman, J. Church and D. Chelton, 1994: Surface eddy momentum
  163. ux and velocity variances in the Southern Ocean from Geosat altimetry, J. Phys.
  164. Oceanogr., 24, 2050{2071.
  165. Munk, W. H., and E. Palmen, 1951: Note on the dynamics of the Antarctic
  166. Circumpolar Current, Tellus, 3, 53{55.
  167. Nowlin, Jr., W. D., and M. Cliord, 1982: The kinematic and thermohaline zonation of
  168. the Antarctic Circumpolar Current at Drake Passage, J. Mar. Res., 40, Suppl.,
  169. 481{507.
  170. Nowlin, Jr., W. D., and J. M. Klinck, 1986: The physics of the Antarctic Circumpolar
  171. Current, Rev. of Geophys., 24, 469{491.
  172. Nowlin, Jr., W. D., T. Whitworth, III and R. D. Pillsbury, 1977: Structure and
  173. transport of the Antarctic Circumpolar Current at Drake Passage from short-term
  174. measurements, J. Phys. Oceanogr., 7, 788{802.
  175. Nowlin, Jr., W. D., S. J. Worley and T. Whitworth, III, 1985: Methods for making
  176. point estimates of eddy heat ux as applied to the Antarctic Circumpolar Current,
  177. J. Geophys. Res., 90, 3305{3324.
  178. Olbers, D., V. Gouretski, G. Sei and J. Schroter, 1992: Hydrographic atlas of the
  179. Southern Ocean, Alfred Wegener Institute, Bremerhaven, 17pp.+82 plates.
  180. Orsi, A. H., T. Whitworth, III and W. D. Nowlin, Jr., 1995: On the meridional extent
  181. and fronts of the Antarctic Circumpolar Current, Deep-Sea Res., 42(5), 641{673.
  182. Pedlosky, J., 1987: Geophysical Fluid Dynamics, Springer-Verlag, Second edition,
  183. 710pp.
  184. Peterson, R. G., W. D. Nowlin, Jr. and T. Whitworth, III, 1982: Generation and
  185. evolution of a cyclonic ring at Drake Passage in early 1979, J. Phys. Oceanogr.,
  186. 12, 712{719.
  187. Pillsbury, R. D., T. Whitworth, III, W. D. Nowlin, Jr. and F. Sciremammano, Jr.,
  188. 1979: Currents and temperatures as observed in Drake Passage during 1975, J.
  189. Phys. Oceanogr., 9, 469{482.
  190. Read, J. F., and R. T. Pollard, 1993: Structure and transport of the Antarctic
  191. Circumpolar Current and Agulhas Return Current at 40E, J. Geophys. Res.,
  192. 98(C7), 12,281{12,295.
  193. Rintoul, S. R., 1998: On the origin and inuence of Adelie Land Bottom Water, in
  194. Ocean, Ice and Atmosphere: Interactions at Antarctic Continental
  195. Margin, vol. 75 of Antarctic Research Series, edited by S. S. Jacobs, and
  196. R. Weiss, pp. 151{171, American Geophysical Union.
  197. Rintoul, S. R., and J. L. Bullister, 1999: A late winter hydrographic section from
  198. Tasmania to Antarctica, Deep-Sea Res., 46, 1417{1454.
  199. Rintoul, S. R., J. R. Donguy and D. H. Roemmich, 1997: Seasonal evolution of upper
  200. ocean thermal structure between Tasmania and Antarctica, Deep-Sea Res., 44,
  201. 1185{1202.
  202. Rintoul, S. R., C. Hughes and D. Olbers, 2000a: The Antarctic Circumpolar System, in
  203. Oceans and Climate, edited by G. Siedler, J. Church, and J. Gould, Academic
  204. Press, In press.
  205. Rintoul, S. R., and S. Sokolov, 2000: Baroclinic transport variability of the Antarctic
  206. Circumpolar Current south of Australia (WOCE repeat section SR3), J. Geophys.
  207. Res., In press.
  208. Rintoul, S. R., S. Sokolov and J. A. Church, 2000b: A six year record of baroclinic
  209. transport variability of the Antarctic Circumpolar Current at 140E, derived from
  210. XBT and altimeter measurements, J. Geophys. Res., Submitted.
  211. Rosenberg, M., S. Bray, N. Bindo, S. Rintoul, N. Johnson, S. Bell and P. Towler,
  212. 1997: Aurora Australis marine science cruise AU9501, AU9604, and AU9601 -
  213. Oceanographic eld measurements and analysis, inter-cruise comparisons and data
  214. quality notes, Research Report 12, Antarctic Cooperative Research Centre,
  215. Hobart, Australia.
  216. Rosenberg, M., R. Eriksen, S. Bell, N. Bindo and S. Rintoul, 1995a: Aurora Australis
  217. marine science cruise AU9407 - Oceanographic eld measurements and analysis,
  218. Research Report 6, Antarctic Cooperative Research Centre, Hobart, Australia, 97
  219. pp.
  220. Rosenberg, M., R. Eriksen, S. Bell and S. Rintoul, 1996: Aurora Australis marine
  221. science cruise AU9404 - Oceanographic eld measurements and analysis, Research
  222. Report 8, Antarctic Cooperative Research Centre, Hobart, Australia, 53 pp.
  223. Rosenberg, M., R. Eriksen and S. Rintoul, 1995b: Aurora Australis marine science
  224. cruise AU9309/AU9391 - Oceanographic eld measurements and analysis, Research
  225. Report 2, Antarctic Cooperative Research Centre, Hobart, Australia, 103 pp.
  226. Schmitz, Jr., W. J., 1996: On the eddy eld in the Agulhas Retroection, with some
  227. global considerations, J. Geophys. Res., 101, 16,259{16,271.
  228. Sciremammano, Jr., F., 1980: The nature of the poleward heat ux due to
  229. low-frequency current uctuations in Drake Passage, J. Phys. Oceanogr., 10,
  230. 843{852.
  231. Smith, W. H. F., and D. T. Sandwell, 1994: Bathymetric prediction from dense satellite
  232. altimetry and sparse shipboard bathymetry, J. Geophys. Res., 99, 21803{21824.
  233. Speer, K., S. Rintoul and B. Sloyan, 1999: The diabatic Deacon cell, J. Phys.
  234. Oceanogr., Submitted.
  235. Stevens, D. P., and V. O. Ivchenko, 1997: The zonal momentum balance in an
  236. eddy-resolving general-circulation model of the Southern Ocean, Quart. J. Roy.
  237. Meteor. Soc., 123, 929{951.
  238. Thompson, R. O. R. Y., 1983: Low-pass lters to suppress inertial and tidal
  239. frequencies, J. Phys. Oceanogr., 13, 1077{1083.
  240. Treguier, A. M., and J. C. McWilliams, 1990: Topographic inuences on wind-driven,
  241. stratied ow in a -plane channel: An idealized model for the Antarctic
  242. Circumpolar Current, J. Phys. Oceanogr., 20, 321{343.
  243. Whitworth, III, T., 1983: Monitoring the transport of the Antarctic Circumpolar
  244. Current at Drake Passage, J. Phys. Oceanogr., 13, 2045{2057.
  245. Whitworth, III, T., W. D. Nowlin, Jr. and S. J. Worley, 1982: The net transport of the
  246. Antarctic Circumpolar Current through Drake Passage, J. Phys. Oceanogr., 12,
  247. 960{971.
  248. Whitworth, III, T., and R. G. Peterson, 1985: Volume transport of the Antarctic
  249. Circumpolar Current from bottom pressure measurements, J. Phys. Oceanogr.,
  250. 15, 810{816.
  251. Wilkin, J. L., and R. A. Morrow, 1994: Eddy kinetic energy and momentum ux in the
  252. Southern Ocean: Comparison of a global eddy-resolving model with altimeter, drifter
  253. and current-meter data, J. Geophys. Res., 99(C4), 7903{7916.
  254. Wol, J. O., E. Maier-Reimer and D. J. Olbers, 1991: Wind-driven ow over
  255. topography in a zonal -plane channel: A quasi-geostrophic model of the Antarctic
  256. Circumpolar Current, J. Phys. Oceanogr., 21, 236{264.
  257. Wong, A. P. S., N. L. Bindo and J. A. Church, 1999: Large-scale freshening of
  258. intermediate waters in the Pacic and Indian oceans, Nature, 400, 440{443.
  259. Wright, D. G., 1981: Baroclinic instability in Drake Passage, J. Phys. Oceanogr., 11,
  260. 231{246.
  261. Yaremchuk, M., N. L. Bindo, J. Schroter, D. Nechaev and S. R. Rintoul, 2000: On the
  262. zonal and meridional circulation and ocean transports between Tasmania and
  263. Antarctica, J. Geophys. Res., Submitted." name="eprints.referencetext" />
  264. <meta content="Phillips, Helen E. (2000) Mean flow, eddy variability and energetics of the Subantarctic Front south of Australia. PhD thesis, University of Tasmania." name="eprints.citation" />
  265. <meta content="http://eprints.utas.edu.au/814/1/front_thesis.pdf" name="eprints.document_url" />
  266. <meta content="http://eprints.utas.edu.au/814/2/thesis.pdf" name="eprints.document_url" />
  267. <meta content="http://eprints.utas.edu.au/814/3/thesis_fig1p1.pdf" name="eprints.document_url" />
  268. <meta content="http://eprints.utas.edu.au/814/4/thesis_fig1p2.pdf" name="eprints.document_url" />
  269. <meta content="http://eprints.utas.edu.au/814/5/thesis_fig1p3.pdf" name="eprints.document_url" />
  270. <meta content="http://eprints.utas.edu.au/814/6/thesis_fig2p2.pdf" name="eprints.document_url" />
  271. <meta content="http://eprints.utas.edu.au/814/7/thesis_fig2p4.pdf" name="eprints.document_url" />
  272. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  273. <meta content="Mean flow, eddy variability and energetics of the Subantarctic Front south of Australia" name="DC.title" />
  274. <meta content="Phillips, Helen E." name="DC.creator" />
  275. <meta content="260403 Physical Oceanography" name="DC.subject" />
  276. <meta content="This thesis describes the variability and mean flow of the Subantarctic Front
  277. (SAF) south of Australia using time series measurements of velocity and
  278. temperature from 1993 to 1995, and six hydrographic transects along WOCE
  279. line SR3 from Tasmania to Antarctica over the period 1991 to 1996. The SAF
  280. is the strongest jet of the Antarctic Circumpolar Current (ACC) south of
  281. Australia. The time series of velocity and temperature are only the third such
  282. dataset collected in the ACC and provide insight into the dynamics of this
  283. massive current and into the heat and momentum balances of the Southern
  284. Ocean.
  285. The SAF was found to be an energetic, meandering jet with vertically coherent
  286. fluctuations. These fluctuations varied on a timescale of 20 days, and had a
  287. typical amplitude of 30 cm/s at 1150 dbar. The analysis used a coordinate
  288. frame that rotated daily to be in alignment with the direction of flow. This
  289. allowed the mesoscale variability of the SAF to be isolated from variability due
  290. to meandering of the front and proved very successful for examining eddy
  291. fluxes. Vertically averaged cross-stream eddy heat flux was 11.3 kW/m^2
  292. poleward and was significantly different from zero at the 95% confidence level
  293. for fluctuations with periods between 2 and 90 days. Zonally integrated, this
  294. eddy heat flux (=0.9x10^15 W) is more than large enough to balance the heat
  295. lost south of the Polar Front and is as large as cross-SAF fluxes found in Drake
  296. Passage. Cross-stream eddy momentum fluxes were small and not significantly
  297. different from zero but were tending to decelerate the mean flow. A relationship
  298. between vertical motion and meander phase identified in the Gulf Stream was
  299. found to hold for the SAF. Eddy kinetic energy levels were similar to those in
  300. Drake Passage and southeast of New Zealand. Eddy potential energy was up to
  301. an order of magnitude larger than at the other ACC sites, most likely because
  302. meandering of the front is more common south of Australia. Baroclinic
  303. conversion was found to be the dominant mechanism by which eddies grow
  304. south of Australia. The typical time for the growth of an eddy is estimated to
  305. be 30 days, approximately half that in Drake Passage. This is consistent with
  306. observations from satellite altimetry which indicate that eddy energy is growing
  307. rapidly downstream of the Australian measurement site, while the eddy field in
  308. Drake Passage is mature.
  309. Mean cross-stream profiles of absolute and baroclinic velocity in the SAF at five
  310. current meter levels have been obtained from two streamwise profiling
  311. techniques using specific volume anomaly at 780 dbar as the cross-stream
  312. coordinate. One of the techniques, using hydrographic data to estimate the
  313. baroclinic velocity profile, is presented for the first time. The mean SAF
  314. velocity profile is composed of one central peak, reaching 52 and 34 cm/s at
  315. 420 dbar, absolute and baroclinic respectively, and several smaller peaks. The
  316. SAF flow is coherent at all levels, reaches the sea floor, and is at least 220 km
  317. wide. The cross-stream structure of baroclinic and absolute transport of the
  318. SAF has been characterized for the first time. The integrated mean transport is
  319. at least 116+/-10 x 10^6 m^3/s, of which approximately 14% is barotropic. The
  320. linear conditions for baroclinic and barotropic instability are satisfied at the
  321. array, consistent with the eddy growth rates calculated." name="DC.description" />
  322. <meta content="2000" name="DC.date" />
  323. <meta content="Thesis" name="DC.type" />
  324. <meta content="NonPeerReviewed" name="DC.type" />
  325. <meta content="application/pdf" name="DC.format" />
  326. <meta content="http://eprints.utas.edu.au/814/1/front_thesis.pdf" name="DC.identifier" />
  327. <meta content="application/pdf" name="DC.format" />
  328. <meta content="http://eprints.utas.edu.au/814/2/thesis.pdf" name="DC.identifier" />
  329. <meta content="application/pdf" name="DC.format" />
  330. <meta content="http://eprints.utas.edu.au/814/3/thesis_fig1p1.pdf" name="DC.identifier" />
  331. <meta content="application/pdf" name="DC.format" />
  332. <meta content="http://eprints.utas.edu.au/814/4/thesis_fig1p2.pdf" name="DC.identifier" />
  333. <meta content="application/pdf" name="DC.format" />
  334. <meta content="http://eprints.utas.edu.au/814/5/thesis_fig1p3.pdf" name="DC.identifier" />
  335. <meta content="application/pdf" name="DC.format" />
  336. <meta content="http://eprints.utas.edu.au/814/6/thesis_fig2p2.pdf" name="DC.identifier" />
  337. <meta content="application/pdf" name="DC.format" />
  338. <meta content="http://eprints.utas.edu.au/814/7/thesis_fig2p4.pdf" name="DC.identifier" />
  339. <meta content="Phillips, Helen E. (2000) Mean flow, eddy variability and energetics of the Subantarctic Front south of Australia. PhD thesis, University of Tasmania." name="DC.identifier" />
  340. <meta content="http://eprints.utas.edu.au/814/" name="DC.relation" />
  341. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/BibTeX/epprod-eprint-814.bib" title="BibTeX" type="text/plain" />
  342. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/ContextObject/epprod-eprint-814.xml" title="OpenURL ContextObject" type="text/xml" />
  343. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/ContextObject::Dissertation/epprod-eprint-814.xml" title="OpenURL Dissertation" type="text/xml" />
  344. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/ContextObject::Journal/epprod-eprint-814.xml" title="OpenURL Journal" type="text/xml" />
  345. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/DC/epprod-eprint-814.txt" title="Dublin Core" type="text/plain" />
  346. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/DIDL/epprod-eprint-814.xml" title="DIDL" type="text/xml" />
  347. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/EndNote/epprod-eprint-814.enw" title="EndNote" type="text/plain" />
  348. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/HTML/epprod-eprint-814.html" title="HTML Citation" type="text/html; charset=utf-8" />
  349. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/METS/epprod-eprint-814.xml" title="METS" type="text/xml" />
  350. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/MODS/epprod-eprint-814.xml" title="MODS" type="text/xml" />
  351. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/RIS/epprod-eprint-814.ris" title="Reference Manager" type="text/plain" />
  352. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/Refer/epprod-eprint-814.refer" title="Refer" type="text/plain" />
  353. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/Simple/epprod-eprint-814text" title="Simple Metadata" type="text/plain" />
  354. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/Text/epprod-eprint-814.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  355. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/814/XML/epprod-eprint-814.xml" title="EP3 XML" type="text/xml" />
  356.  
  357. </head>
  358. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  359. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  360.  
  361.  
  362.  
  363.  
  364. <table width="795" border="0" cellspacing="0" cellpadding="0">
  365. <tr>
  366. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  367. <table border="0" cellpadding="0" cellspacing="0" width="795">
  368. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  369. <tr>
  370. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  371. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  372. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  373. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  374. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  375. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  376. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  377. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  378. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  379. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  380. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  381. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  382. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  383. </tr>
  384. <tr>
  385. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  386. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  387. </tr>
  388. <tr>
  389. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  390. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  391. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  392. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  393. </tr>
  394. <tr>
  395. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  396. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  397. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  398. </tr>
  399. <tr>
  400. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  401. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  402. </tr>
  403. <tr>
  404. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  405. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  406. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  407. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  408. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  409. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  410. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  411. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  412. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  413. </tr>
  414. <tr>
  415. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  416. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  417. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  418. </tr>
  419. <tr>
  420. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  421. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  422. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  423. </tr>
  424. </table></td>
  425. </tr>
  426. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  427. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  428. <td align="right" style="white-space: nowrap">
  429. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  430. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  431. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  432. <input type="hidden" name="_order" value="bytitle" />
  433. <input type="hidden" name="basic_srchtype" value="ALL" />
  434. <input type="hidden" name="_satisfyall" value="ALL" />
  435. </form>
  436. </td>
  437. </tr></table></td></tr>
  438. <tr>
  439. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  440.  
  441.  
  442. <div align="center">
  443. <table width="720" class="ep_tm_main"><tr><td align="left">
  444. <h1 class="ep_tm_pagetitle">Mean flow, eddy variability and energetics of the Subantarctic Front south of Australia</h1>
  445. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Phillips, Helen E.</span> (2000) <xhtml:em>Mean flow, eddy variability and energetics of the Subantarctic Front south of Australia.</xhtml:em> PhD thesis, University of Tasmania.</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_810' );" href="http://eprints.utas.edu.au/814/1/front_thesis.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_810' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_810"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/814/thumbnails/1/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/814/1/front_thesis.pdf"><span class="ep_document_citation">PDF (Front Matter)</span></a> - Requires a PDF viewer<br />109Kb</td></tr><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_811' );" href="http://eprints.utas.edu.au/814/2/thesis.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_811' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_811"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/814/thumbnails/2/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/814/2/thesis.pdf"><span class="ep_document_citation">PDF (Whole Thesis)</span></a> - Requires a PDF viewer<br />4034Kb</td></tr><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_812' );" href="http://eprints.utas.edu.au/814/3/thesis_fig1p1.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_812' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_812"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/814/thumbnails/3/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/814/3/thesis_fig1p1.pdf"><span class="ep_document_citation">PDF (Fig 1 pg1)</span></a> - Requires a PDF viewer<br />40Kb</td></tr><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_813' );" href="http://eprints.utas.edu.au/814/4/thesis_fig1p2.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_813' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_813"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/814/thumbnails/4/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/814/4/thesis_fig1p2.pdf"><span class="ep_document_citation">PDF (Fig 1 pg2)</span></a> - Requires a PDF viewer<br />971Kb</td></tr><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_814' );" href="http://eprints.utas.edu.au/814/5/thesis_fig1p3.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_814' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_814"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/814/thumbnails/5/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/814/5/thesis_fig1p3.pdf"><span class="ep_document_citation">PDF (Fig 1 pg3)</span></a> - Requires a PDF viewer<br />33Kb</td></tr><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_815' );" href="http://eprints.utas.edu.au/814/6/thesis_fig2p2.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_815' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_815"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/814/thumbnails/6/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/814/6/thesis_fig2p2.pdf"><span class="ep_document_citation">PDF (Fig 2 pg2)</span></a> - Requires a PDF viewer<br />73Kb</td></tr><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_816' );" href="http://eprints.utas.edu.au/814/7/thesis_fig2p4.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_816' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_816"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/814/thumbnails/7/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/814/7/thesis_fig2p4.pdf"><span class="ep_document_citation">PDF (Fig 2 pg4)</span></a> - Requires a PDF viewer<br />883Kb</td></tr></table><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">This thesis describes the variability and mean flow of the Subantarctic Front&#13;
  446. (SAF) south of Australia using time series measurements of velocity and&#13;
  447. temperature from 1993 to 1995, and six hydrographic transects along WOCE&#13;
  448. line SR3 from Tasmania to Antarctica over the period 1991 to 1996. The SAF&#13;
  449. is the strongest jet of the Antarctic Circumpolar Current (ACC) south of&#13;
  450. Australia. The time series of velocity and temperature are only the third such&#13;
  451. dataset collected in the ACC and provide insight into the dynamics of this&#13;
  452. massive current and into the heat and momentum balances of the Southern&#13;
  453. Ocean.&#13;
  454. The SAF was found to be an energetic, meandering jet with vertically coherent&#13;
  455. fluctuations. These fluctuations varied on a timescale of 20 days, and had a&#13;
  456. typical amplitude of 30 cm/s at 1150 dbar. The analysis used a coordinate&#13;
  457. frame that rotated daily to be in alignment with the direction of flow. This&#13;
  458. allowed the mesoscale variability of the SAF to be isolated from variability due&#13;
  459. to meandering of the front and proved very successful for examining eddy&#13;
  460. fluxes. Vertically averaged cross-stream eddy heat flux was 11.3 kW/m^2&#13;
  461. poleward and was significantly different from zero at the 95% confidence level&#13;
  462. for fluctuations with periods between 2 and 90 days. Zonally integrated, this&#13;
  463. eddy heat flux (=0.9x10^15 W) is more than large enough to balance the heat&#13;
  464. lost south of the Polar Front and is as large as cross-SAF fluxes found in Drake&#13;
  465. Passage. Cross-stream eddy momentum fluxes were small and not significantly&#13;
  466. different from zero but were tending to decelerate the mean flow. A relationship&#13;
  467. between vertical motion and meander phase identified in the Gulf Stream was&#13;
  468. found to hold for the SAF. Eddy kinetic energy levels were similar to those in&#13;
  469. Drake Passage and southeast of New Zealand. Eddy potential energy was up to&#13;
  470. an order of magnitude larger than at the other ACC sites, most likely because&#13;
  471. meandering of the front is more common south of Australia. Baroclinic&#13;
  472. conversion was found to be the dominant mechanism by which eddies grow&#13;
  473. south of Australia. The typical time for the growth of an eddy is estimated to&#13;
  474. be 30 days, approximately half that in Drake Passage. This is consistent with&#13;
  475. observations from satellite altimetry which indicate that eddy energy is growing&#13;
  476. rapidly downstream of the Australian measurement site, while the eddy field in&#13;
  477. Drake Passage is mature.&#13;
  478. Mean cross-stream profiles of absolute and baroclinic velocity in the SAF at five&#13;
  479. current meter levels have been obtained from two streamwise profiling&#13;
  480. techniques using specific volume anomaly at 780 dbar as the cross-stream&#13;
  481. coordinate. One of the techniques, using hydrographic data to estimate the&#13;
  482. baroclinic velocity profile, is presented for the first time. The mean SAF&#13;
  483. velocity profile is composed of one central peak, reaching 52 and 34 cm/s at&#13;
  484. 420 dbar, absolute and baroclinic respectively, and several smaller peaks. The&#13;
  485. SAF flow is coherent at all levels, reaches the sea floor, and is at least 220 km&#13;
  486. wide. The cross-stream structure of baroclinic and absolute transport of the&#13;
  487. SAF has been characterized for the first time. The integrated mean transport is&#13;
  488. at least 116+/-10 x 10^6 m^3/s, of which approximately 14% is barotropic. The&#13;
  489. linear conditions for baroclinic and barotropic instability are satisfied at the&#13;
  490. array, consistent with the eddy growth rates calculated.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Thesis (PhD)</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Antarctic Circumpolar Current&#13;
  491. Subantarctic Front&#13;
  492. current meter&#13;
  493. velocity&#13;
  494. heat&#13;
  495. momentum&#13;
  496. flux&#13;
  497. </td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260403.html">260000 Earth Sciences &gt; 260400 Oceanography &gt; 260403 Physical Oceanography</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">814</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Dr Helen E Phillips</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">07 Mar 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=814;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=814">item control page</a></p>
  498. </td></tr></table>
  499. </div>
  500.  
  501.  
  502.  
  503. <!-- InstanceEndEditable --></td>
  504. </tr>
  505. <tr>
  506. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  507. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  508. <tr valign="top">
  509. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  510. </tr>
  511. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  512. <tr valign="top">
  513. <td width="68%" class="footer">Authorised by the University Librarian<br />
  514. © University of Tasmania ABN 30 764 374 782<br />
  515. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  516. <td width="32%"><div align="right">
  517. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  518. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  519. </a></p>
  520. </div></td>
  521. </tr>
  522. <tr valign="top">
  523. <td><p>  </p></td>
  524. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  525. </tr>
  526. </table>
  527. <!-- #EndLibraryItem -->
  528. <div align="center"></div></td>
  529. </tr>
  530. </table>
  531.  
  532. </body>
  533. </html>