GitBucket
4.21.2
Toggle navigation
Snippets
Sign in
Files
Branches
1
Releases
Issues
Pull requests
Labels
Priorities
Milestones
Wiki
Forks
1
nigel.stanger
/
templates
forked from
mark.george/templates
Browse code
Fixed a few issues with r diagrams.
master
1 parent
35c67eb
commit
d9f59091f39495497566c01ad52d5c45864531dc
Mark
authored
on 8 Dec 2016
Patch
Showing
1 changed file
r/graph-functions.r
Ignore Space
Show notes
View
r/graph-functions.r
library(TeachingDemos) # define some colors dCol <- rgb(1.0,0,0,alpha=0.2) dBorder <- rgb(1.0,0,0,alpha=1.0) # function for producing a histogram histogram <- function(data, width=5, step=10, min=0, max=100, xlab=columnName, ylab=NULL, overridelabels=NULL, showcurve=FALSE, stats=TRUE, showbinwidth=FALSE, ylimit=NULL, curveAdjust=0.6, centresRight=TRUE, statsRight=FALSE, values=TRUE, ...) { # get number of results of data in specified column n <- length(data) # create histogram data h <- hist(data, breaks=seq(min, max, by=width), include.lowest=TRUE, right=centresRight, plot=FALSE) if(showcurve) { # calculate density for plotting a fitted curve den <- density(data, curveAdjust, kernel="cosine", na.rm=TRUE) } # calculate range for y-axis unless it is specified as a parameter if(is.null(ylimit)) { ylimit <- max(h$count) ylimit <- ceiling(ylimit / step) * step if(showcurve) { ylimit <- max(c(ylimit,width*n*den$y)) } } subText = "" if(showbinwidth) { subText = paste("(bin width of ", width,")",sep="") } # create initial plot if(is.null(ylab)) { ylab <- "Number of Students" } plot(h,ylim=c(0, ylimit), xlab=xlab, ylab=ylab, sub=subText, axes=FALSE, ...) # plot some hrizontal grid lines abline(h=seq(0, ylimit, by=step), col="grey", lty="solid", lwd=0.5) # plot the histogram lines(h, ylim=c(0, ylimit), border="darkblue", col="light blue") mtext("Histogram", side=3, line=0.25) ## render the axis labels ## # cache the original graphics params and shrink the text a bit op <- par(cex=0.7, font.lab=2) # y-axis LEFT <- 2 axis(LEFT, at=seq(0, ylimit, by=step), las=1) # x-axis # are we overriding x labels? if (!is.null(overridelabels)) { axis(1, at=seq(min+0.5*width, max-0.5*width, by=width), labels=overridelabels) } else { axis(1, at=seq(min, max, by=width), labels=seq(min, max, by=width)) } # restore graphics params par(op) # plot density curve if required if(showcurve) { # scale the height of the curve and render it polygon(x=den$x, y=width*n*den$y, col=dCol, border=dBorder) } # render values over bars if(values) { op <- par(cex=0.7) # cache the graphics params plot(h, labels=TRUE, col="transparent", border="transparent", add=TRUE) par(op) # restore graphics params } if(stats) { op <- par(cex=0.7) avg <- mean(na.omit(data), trim=0) med <- median(na.omit(data)) mi <- min(na.omit(data)) ma <- max(na.omit(data)) maxCount <- length(which(round(data,3) == max)) subsStr <- paste("Submissions: ", length(na.omit(data)), sep="") avgStr <- paste("Mean: ", round(avg,1), " (", round((avg/max)*100,1),"%)", sep="") medStr <- paste("Median: ", round(med,1), " (", round((med/max)*100,1),"%)", sep="") minStr <- paste("Minimum: ", round(mi,1), " (",round((mi/max)*100,1),"%)", sep="") maxStr <- paste("Maximum: ", round(ma,1), " (",round((ma/max)*100,1),"%)", sep="") fullMarksStr <- paste("Full Marks: ", maxCount," (", round(maxCount/length(na.omit(data))*100,1),"%)", sep="") combinedStr <- paste(subsStr, avgStr, medStr, minStr, maxStr, fullMarksStr, sep="\n") strW <- strwidth(combinedStr) strH <- strheight(combinedStr) margin <- 2 xmargin <- margin * max / 100 ymargin <- margin * ylimit / 100 if(!statsRight) { rect(xleft=0, xright=strW+xmargin*2, ytop=ylimit, ybottom=ylimit-strH-ymargin*2, col="white") text(x=xmargin, y=ylimit-(strH / 2) - ymargin, combinedStr, adj=0) } else { rect(xleft=max-strW-(xmargin*2), max, ytop=ylimit, ybottom=ylimit-strH-ymargin*2, col="white") text(x=max-strW-xmargin, y=ylimit-(strH / 2) - ymargin, combinedStr, adj=0) } par(op) } } # function for producing a scatter plot #pointlabels are labels to be rendered beside each point on the plot scatter <- function(pointlabels=NULL, x, y, xlab, ylab, maxx=100, maxy=100, fit=FALSE, ...) { # plot x vs y as solid points (thats what the pch=19 means) points plot(x, y, xlim=c(0,maxx), ylim=c(0,maxy), col="light blue", pch=19, xlab=xlab, ylab=ylab, xaxt='n',yaxt='n', ...) # plot some grid lines abline(h=seq(0, maxy, 10), col="light grey", lty="solid", lwd=0.5) abline(v=seq(0, maxx, 10), col="light grey", lty="solid", lwd=0.5) # abline(a=0, b=1, col="light grey", lwd=0.5) # plot the graph points(x, y, xlim=c(0,maxx), ylim=c(0,maxy), col="light blue", pch=19, xlab=xlab, ylab=ylab, ...) # cache the original graphics params and shrink the text a bit op <- par(cex=0.7) # y-axis LEFT <- 2 axis(LEFT, at=seq(0, maxy, by=10), las=1) axis(1, at=seq(0, maxx, by=10)) par(op) mtext("Scatter Plot", side=3, line=0.25) # replot the points with darker outline to create a border around the points points(x,y, col="dark blue") # display point labels next to points if they were provided if(!is.null(pointlabels)) { # calculate a normalised offset for the x position of the labels xlabelpos <- x-3.8*(maxx/100) # render the labels text(xlabelpos,y,pointlabels, cex=0.5) } # change plot color op <- par(col="red") co <- list() co$x <- x co$y <- y valid <- is.na(co$x) | is.na(co$y) valid <- !valid co$x <- co$x[valid] co$y <- co$y[valid] if(fit) { # render a lowess regression lines(lowess(co)) #abline(reggie) } # restore original plot params par(op) } # Sums two vectors in a coalescing fashion. # If either value in x1 or x2 is NA that the result is the non-NA value. # If both values in x1 or x2 are NA then the result is NA. # If neither x1 or x2 is NA then the result is x1 + x2. # coalescing_sum <- function (x1, x2) { # # # Iterative version. Keeping around as an example. # # results <- 1:length(x1) # # for(i in 1:length(x1)) { # # if(xor(is.na(x1[i]),is.na(x2[i]))) { # results[i] <- ifelse(is.na(x1[i]), 0, x1[i]) + ifelse(is.na(x2[i]), 0, x2[i]) # } else { # results[i] <- x1[i] + x2[i] # } # # } # # return(results) # } # Sums two vectors in a coalescing fashion. # If either value in x1 or x2 is NA that the result is the non-NA value. # If both values in x1 or x2 are NA then the result is NA. # If neither x1 or x2 is NA then the result is x1 + x2. coalescing_sum <- function (x, y) { # keep track of which positions have both values as na both.na <- is.na(x) & is.na(y) # zero nas x[is.na(x)] <- 0 y[is.na(y)] <- 0 # do the sum z <- x + y; # replace positions with both na as na z[both.na] <- NA return(z) } summaryboxplot <- function(data, formula, drawOutlierLabels=F, extras=NULL, labs=NULL, ...) { # add padding if adding extras op <-if(!is.null(extras)) { par(mar=c(4+length(extras), 4, 4, 2) + 0.15) } else { par() } boxplot(formula=formula, data=data, axes=F, ylim=c(0,100), ...) abline(h=seq(0,100, by=5), col="grey", lty="solid", lwd=0.5) axis(2, at=seq(0,100, by=10), las=1) axis(1, labels=levels(labs), at=seq(1, length(levels(labs))), font=2, ...) if(!is.null(extras)) { for(i in 1:length(extras)) { mtext(line=i-1, text=names(extras[i]), side=1, padj=4, adj=1, at=0.55, cex=0.8, font=2); axis(line=i-1, side=1, padj=2, at=seq(1,nrow(extras[i])), labels=t(extras[i]), cex.axis=0.8, tick=F, ...) } } b <- boxplot(formula=formula, data=data, col="light blue", yaxt="n", xaxt="n", add=TRUE) for (g in unique(b$group)) { # for every group that has at least one outlier # get assessment label l <- b$name[g] # get outliers o <- b$out[which(b$group == g)] # get x,y coords of outliers and ID labels x0 <- rep(g, length(o)); x1 <- rep(g+0.1, length(o)) y0 <- o; y1 <- spread.labs(o, 1.25*strheight('A'), maxiter=6000, stepsize = 0.05) # plots IDs if(drawOutlierLabels) { # get IDs of outliers i <- data$ID[data$Assessment == l & data$Mark %in% o] text(x1, y1, i, adj=c(-0.1,0.5), col="black", cex=0.7) # plot lines linking IDs to points (swap y0 with y1 if the lines pointing to outliers are backwards) segments(x0+0.5*strwidth("X")+strwidth(" "), y0, x1-strwidth(""), y1, col="black", lty=1) } # replot outliers with coloured background points(x=x0, y=y0, bg="light blue", pch=21) } par(op) }
library(TeachingDemos) # define some colors dCol <- rgb(1.0,0,0,alpha=0.2) dBorder <- rgb(1.0,0,0,alpha=1.0) # function for producing a histogram histogram <- function(data, width=5, step=10, min=0, max=100, xlab=columnName, ylab=NULL, overridelabels=NULL, showcurve=FALSE, stats=TRUE, showbinwidth=FALSE, ylimit=NULL, curveAdjust=0.6, centresRight=TRUE, statsRight=FALSE, values=TRUE, ...) { # get number of results of data in specified column n <- length(data) # create histogram data h <- hist(data, breaks=seq(min, max, by=width), include.lowest=TRUE, right=centresRight, plot=FALSE) if(showcurve) { # calculate density for plotting a fitted curve den <- density(data, curveAdjust, kernel="cosine", na.rm=TRUE) } # calculate range for y-axis unless it is specified as a parameter if(is.null(ylimit)) { ylimit <- max(h$count) ylimit <- ceiling(ylimit / step) * step if(showcurve) { ylimit <- max(c(ylimit,width*n*den$y)) } } subText = "" if(showbinwidth) { subText = paste("(bin width of ", width,")",sep="") } # create initial plot if(is.null(ylab)) { ylab <- "Number of Students" } plot(h,ylim=c(0, ylimit), xlab=xlab, ylab=ylab, sub=subText, axes=FALSE, ...) # plot some hrizontal grid lines abline(h=seq(0, ylimit, by=step), col="grey", lty="solid", lwd=0.5) # plot the histogram lines(h, ylim=c(0, ylimit), border="darkblue", col="light blue") mtext("Histogram", side=3, line=0.25) ## render the axis labels ## # cache the original graphics params and shrink the text a bit op <- par(cex=0.7, font.lab=2) # y-axis LEFT <- 2 axis(LEFT, at=seq(0, ylimit, by=step), las=1) # x-axis # are we overriding x labels? if (!is.null(overridelabels)) { axis(1, at=seq(min+0.5*width, max-0.5*width, by=width), labels=overridelabels) } else { axis(1, at=seq(min, max, by=width), labels=seq(min, max, by=width)) } # restore graphics params par(op) # plot density curve if required if(showcurve) { # scale the height of the curve and render it polygon(x=den$x, y=width*n*den$y, col=dCol, border=dBorder) } # render values over bars if(values) { op <- par(cex=0.7) # cache the graphics params plot(h, labels=TRUE, col="transparent", border="transparent", add=TRUE) par(op) # restore graphics params } if(stats) { op <- par(cex=0.7) avg <- mean(na.omit(data), trim=0) med <- median(na.omit(data)) mi <- min(na.omit(data)) ma <- max(na.omit(data)) maxCount <- length(which(round(data,3) == max)) subsStr <- paste("Submissions: ", length(na.omit(data)), sep="") avgStr <- paste("Mean: ", round(avg,1), " (", round((avg/max)*100,1),"%)", sep="") medStr <- paste("Median: ", round(med,1), " (", round((med/max)*100,1),"%)", sep="") minStr <- paste("Minimum: ", round(mi,1), " (",round((mi/max)*100,1),"%)", sep="") maxStr <- paste("Maximum: ", round(ma,1), " (",round((ma/max)*100,1),"%)", sep="") fullMarksStr <- paste("Full Marks: ", maxCount," (", round(maxCount/length(na.omit(data))*100,1),"%)", sep="") combinedStr <- paste(subsStr, avgStr, medStr, minStr, maxStr, fullMarksStr, sep="\n") strW <- strwidth(combinedStr) strH <- strheight(combinedStr) margin <- 2 xmargin <- margin * max / 100 ymargin <- margin * ylimit / 100 if(!statsRight) { rect(xleft=0, xright=strW+xmargin*2, ytop=ylimit, ybottom=ylimit-strH-ymargin*2, col="white") text(x=xmargin, y=ylimit-(strH / 2) - ymargin, combinedStr, adj=0) } else { rect(xleft=max-strW-(xmargin*2), max, ytop=ylimit, ybottom=ylimit-strH-ymargin*2, col="white") text(x=max-strW-xmargin, y=ylimit-(strH / 2) - ymargin, combinedStr, adj=0) } par(op) } } # function for producing a scatter plot #pointlabels are labels to be rendered beside each point on the plot scatter <- function(pointlabels=NULL, x, y, xlab, ylab, maxx=100, maxy=100, stats=TRUE, fit=TRUE, ...) { # replace nas with 0 x[is.na(x)] <- 0 y[is.na(y)] <- 0 # calculate correlation r <- cor(x, y) r2 = round(r ** 2,2) # concat r string with rounded value r <- substitute('r'^2*' = '*r2, list(r2 = r2)) # plot x vs y as solid points (thats what the pch=19 means) points plot(x, y, xlim=c(0,maxx), ylim=c(0,maxy), col="light blue", pch=19, xlab=xlab, ylab=ylab, xaxt='n',yaxt='n', ...) # plot some grid lines abline(h=seq(0, maxy, 10), col="grey", lty="solid", lwd=0.5) abline(v=seq(0, maxx, 10), col="grey", lty="solid", lwd=0.5) abline(a=0, b=1, col="grey") # plot the graph points(x, y, xlim=c(0,maxx), ylim=c(0,maxy), col="light blue", pch=19, xlab=xlab, ylab=ylab, ...) # cache the original graphics params and shrink the text a bit op <- par(cex=0.7) # y-axis LEFT <- 2 axis(LEFT, at=seq(0, maxy, by=10), las=1) axis(1, at=seq(0, maxx, by=10)) par(op) # replot the points with darker outline to create a border around the points points(x,y, col="dark blue") # display point labels next to points if they were provided if(!is.null(pointlabels)) { # calculate a normalised offset for the x position of the labels xlabelpos <- x-3.8*(maxx/100) # render the labels text(xlabelpos,y,pointlabels, cex=0.5) } if(stats) { # render the r text in the bottom right text(maxx-maxx*0.1,2,r) } # change plot color op <- par(col="red") co <- list() co$x <- x co$y <- y valid <- co$x > 10 & co$y>10 co$x <- co$x[valid] co$y <- co$y[valid] if(fit) { # render a lowess regression lines(lowess(co)) } # restore original plot params par(op) } # Sums two vectors in a coalescing fashion. # If either value in x1 or x2 is NA that the result is the non-NA value. # If both values in x1 or x2 are NA then the result is NA. # If neither x1 or x2 is NA then the result is x1 + x2. # coalescing_sum <- function (x1, x2) { # # # Iterative version. Keeping around as an example. # # results <- 1:length(x1) # # for(i in 1:length(x1)) { # # if(xor(is.na(x1[i]),is.na(x2[i]))) { # results[i] <- ifelse(is.na(x1[i]), 0, x1[i]) + ifelse(is.na(x2[i]), 0, x2[i]) # } else { # results[i] <- x1[i] + x2[i] # } # # } # # return(results) # } # Sums two vectors in a coalescing fashion. # If either value in x1 or x2 is NA that the result is the non-NA value. # If both values in x1 or x2 are NA then the result is NA. # If neither x1 or x2 is NA then the result is x1 + x2. coalescing_sum <- function (x, y) { # keep track of which positions have both values as na both.na <- is.na(x) & is.na(y) # zero nas x[is.na(x)] <- 0 y[is.na(y)] <- 0 # do the sum z <- x + y; # replace positions with both na as na z[both.na] <- NA return(z) } summaryboxplot <- function(data, formula, drawOutlierLabels=F, extras=NULL, labs=NULL, ...) { # add padding if adding extras op <-if(!is.null(extras)) { par(mar=c(4+length(extras), 4, 4, 2) + 0.15) } else { par() } boxplot(formula=formula, data=data, axes=F, ylim=c(0,100), ...) abline(h=seq(0,100, by=5), col="grey", lty="solid", lwd=0.5) axis(2, at=seq(0,100, by=10), las=1) # axis(1, labels=levels(labs), at=seq(1, length(levels(labs))), font=2, ...) axis(1, labels=levels(data$Assessment), at=seq(1, length(levels(data$Assessment))), font=2, ...) if(!is.null(extras)) { for(i in 1:length(extras)) { mtext(line=i-1, text=names(extras[i]), side=1, padj=4, adj=1, at=0.55, cex=0.8, font=2); axis(line=i-1, side=1, padj=2, at=seq(1,nrow(extras[i])), labels=t(extras[i]), cex.axis=0.8, tick=F, ...) } } b <- boxplot(formula=formula, data=data, col="light blue", yaxt="n", xaxt="n", add=TRUE) for (g in unique(b$group)) { # for every group that has at least one outlier # get assessment label l <- b$name[g] # get outliers o <- b$out[which(b$group == g)] # get x,y coords of outliers and ID labels x0 <- rep(g, length(o)); x1 <- rep(g+0.1, length(o)) y0 <- o; y1 <- spread.labs(o, 1.25*strheight('A'), maxiter=6000, stepsize = 0.05) # plots IDs if(drawOutlierLabels) { # get IDs of outliers i <- data$ID[data$Assessment == l & data$Mark %in% o] text(x1, y1, i, adj=c(-0.1,0.5), col="black", cex=0.7) # plot lines linking IDs to points (swap y0 with y1 if the lines pointing to outliers are backwards) segments(x0+0.5*strwidth("X")+strwidth(" "), y0, x1-strwidth(""), y1, col="black", lty=1) } # replot outliers with coloured background points(x=x0, y=y0, bg="light blue", pch=21) } par(op) }
Show line notes below