- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
- <html>
- <head>
- <title>UTas ePrints - Presentations of factorizable inverse monoids</title>
- <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
- <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
- <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
- <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
- <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
- <link rel="Top" href="http://eprints.utas.edu.au/" />
- <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
- <meta content="Easdown, David" name="eprints.creators_name" />
- <meta content="East, James" name="eprints.creators_name" />
- <meta content="FitzGerald, D.G." name="eprints.creators_name" />
- <meta content="de@maths.usyd.edu.au" name="eprints.creators_id" />
- <meta content="James.East@latrobe.edu.au" name="eprints.creators_id" />
- <meta content="D.FitzGerald@utas.edu.au" name="eprints.creators_id" />
- <meta content="article" name="eprints.type" />
- <meta content="2007-08-23" name="eprints.datestamp" />
- <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
- <meta content="show" name="eprints.metadata_visibility" />
- <meta content="Presentations of factorizable inverse monoids" name="eprints.title" />
- <meta content="pub" name="eprints.ispublished" />
- <meta content="230105" name="eprints.subjects" />
- <meta content="public" name="eprints.full_text_status" />
- <meta content="Factorizable inverse monoid, presentations, symmetric inverse monoid" name="eprints.keywords" />
- <meta content="It is well-known that an inverse monoid is factorizable if and only if it is a homomorphic
- image of a semidirect product of a semilattice (with identity) by a group.
- We use this structure to describe a presentation of an arbitrary factorizable inverse
- monoid in terms of presentations of its group of units and semilattice of idempotents,
- together with some other data. We apply this theory to quickly deduce a well known
- presentation of the symmetric inverse monoid on a nite set." name="eprints.abstract" />
- <meta content="2005" name="eprints.date" />
- <meta content="published" name="eprints.date_type" />
- <meta content="Acta Universitatis Szegediensis, Acta Scientiarum Mathematicarum" name="eprints.publication" />
- <meta content="71" name="eprints.volume" />
- <meta content="3-4" name="eprints.number" />
- <meta content="509-520" name="eprints.pagerange" />
- <meta content="UNSPECIFIED" name="eprints.thesis_type" />
- <meta content="TRUE" name="eprints.refereed" />
- <meta content="http://www.math.u-szeged.hu/acta/" name="eprints.official_url" />
- <meta content="[1] S. Y. Chen and S. C. Hsieh. Factorizable Inverse Semigroups. Semigroup Forum,
- 8(4):283-297, 1974.
- [2] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups Vol II. Number
- 7 in Mathematical Surveys. Amer. Math. Soc., Providence, R.I., 1967.
- [3] E. Dombi. Almost Factorizable Straight Locally Inverse Semigroups. Acta Sci. Math.
- (Szeged), 69(3-4):569-589, 2003.
- [4] D. Easdown, J. East, and D. G. FitzGerald. Braids and Factorizable Inverse Monoids.
- Semigroups and Languages, eds. I.M. Araujo, M.J.J. Branco, V.H. Fernandes, and
- G.M.S. Gomes, World Scientific, pages 86-105, 2002.
- [5] D. Easdown and T. G. Lavers. The Inverse Braid Monoid. Adv. Math., 186(2):438-455,
- 2004.
- [6] J. East. The Permeable Braid Monoid. in preparation.
- [7] J. East. Cofull Embeddings in Coset Monoids. preprint.
- [8] J. East. The Factorizable Braid Monoid. Proc. Edinb. Math. Soc. (2) 49(3):609-636, 2006.
- [9] J. East. Factorizable Inverse Monoids of Cosets of Subgroups of Groups. Comm. Alg., 34(7):2659-2665, 2006.
- [10] D. G. FitzGerald and J. Leech. Dual Symmetric Inverse Semigroups and Representation
- Theory. J. Austral. Math. Soc., 64:146-182, 1998.
- [11] T. G. Lavers. Presentations of General Products of Monoids. J. Algebra, 204(2):733-
- 741, 1998.
- [12] M. V. Lawson. Inverse Semigroups. The Theory of Partial Symmetries. World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
- [13] S. Lipscombe. Symmetric Inverse Semigroups. American Mathematical Society, Providence,
- R.I., 1996.
- [14] D. B. McAlister. Embedding Inverse Semigroups in Coset Semigroups. Semigroup
- Forum, 20:255-267, 1980.
- [15] R. N. McKenzie, G. F. McNulty, and W. F. Taylor. Algebras, Lattices, and Varieties.
- Volume 1. Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole
- Advanced Books & Software, Monterey, CA, 1987.
- [16] John C. Meakin. An Invitation to Inverse Semigroup Theory. Proceedings of the
- Conference on Ordered Structures and Algebra of Computer Languages (K. P. Shum
- and P. C. Yuen, Eds., World Scientific, Singapore), pages 91-115, 1993.
- 9
- [17] Janet E. Mills. Combinatorially Factorizable Inverse Monoids. Semigroup Forum,
- 59(2):220-232, 1999.
- [18] E. H. Moore. Concerning the Abstract Groups of Order k! and 1/2 k! Holohedrically
- Isomorphic with the Symmetric and Alternating Substitution Groups on k Letters.
- Proc. London Math. Soc., 28:357{366, 1897.
- [19] L. M. Popova. Defining Relations in some Semigroups of Partial Transformations of a
- Finite Set (in Russian). Uchenye Zap. Leningrad Gos. Ped. Inst., 218:191-212, 1961.
- [20] L. Solomon. Representations of the Rook Monoid. J. Algebra, 256(2):309-342, 2002.
- [21] L. Solomon. The Iwahori Algebra of Mn(Fq). A Presentation and a Representation
- on Tensor Space. J. Algebra, 273(1):206-226, 2004.
- [22] Yupaporn Tirasupa. Factorizable Transformation Semigroups. Semigroup Forum,
- 18(1):15-19, 1979.
- [23] Yupaporn Tirasupa. Weakly Factorizable Inverse Semigroups. Semigroup Forum,
- 18(4):283-291, 1979.
- [24] R. Wilkinson. A Description of E-Unitary Inverse Semigroups. Proc. Roy. Soc. Edinburgh
- Sect. A, 95(3-4):239-242, 1983." name="eprints.referencetext" />
- <meta content="Easdown, David and East, James and FitzGerald, D.G. (2005) Presentations of factorizable inverse monoids. Acta Universitatis Szegediensis, Acta Scientiarum Mathematicarum, 71 (3-4). pp. 509-520." name="eprints.citation" />
- <meta content="http://eprints.utas.edu.au/1431/1/EEF_PresentationsFactorizable.pdf" name="eprints.document_url" />
- <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
- <meta content="Presentations of factorizable inverse monoids" name="DC.title" />
- <meta content="Easdown, David" name="DC.creator" />
- <meta content="East, James" name="DC.creator" />
- <meta content="FitzGerald, D.G." name="DC.creator" />
- <meta content="230105 Group Theory And Generalisations (Incl. Topological Groups And Lie Groups)" name="DC.subject" />
- <meta content="It is well-known that an inverse monoid is factorizable if and only if it is a homomorphic
- image of a semidirect product of a semilattice (with identity) by a group.
- We use this structure to describe a presentation of an arbitrary factorizable inverse
- monoid in terms of presentations of its group of units and semilattice of idempotents,
- together with some other data. We apply this theory to quickly deduce a well known
- presentation of the symmetric inverse monoid on a nite set." name="DC.description" />
- <meta content="2005" name="DC.date" />
- <meta content="Article" name="DC.type" />
- <meta content="PeerReviewed" name="DC.type" />
- <meta content="application/pdf" name="DC.format" />
- <meta content="http://eprints.utas.edu.au/1431/1/EEF_PresentationsFactorizable.pdf" name="DC.identifier" />
- <meta content="http://www.math.u-szeged.hu/acta/" name="DC.relation" />
- <meta content="Easdown, David and East, James and FitzGerald, D.G. (2005) Presentations of factorizable inverse monoids. Acta Universitatis Szegediensis, Acta Scientiarum Mathematicarum, 71 (3-4). pp. 509-520." name="DC.identifier" />
- <meta content="http://eprints.utas.edu.au/1431/" name="DC.relation" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/BibTeX/epprod-eprint-1431.bib" title="BibTeX" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/ContextObject/epprod-eprint-1431.xml" title="OpenURL ContextObject" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/ContextObject::Dissertation/epprod-eprint-1431.xml" title="OpenURL Dissertation" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/ContextObject::Journal/epprod-eprint-1431.xml" title="OpenURL Journal" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/DC/epprod-eprint-1431.txt" title="Dublin Core" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/DIDL/epprod-eprint-1431.xml" title="DIDL" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/EndNote/epprod-eprint-1431.enw" title="EndNote" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/HTML/epprod-eprint-1431.html" title="HTML Citation" type="text/html; charset=utf-8" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/METS/epprod-eprint-1431.xml" title="METS" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/MODS/epprod-eprint-1431.xml" title="MODS" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/RIS/epprod-eprint-1431.ris" title="Reference Manager" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/Refer/epprod-eprint-1431.refer" title="Refer" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/Simple/epprod-eprint-1431text" title="Simple Metadata" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/Text/epprod-eprint-1431.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/XML/epprod-eprint-1431.xml" title="EP3 XML" type="text/xml" />
-
- </head>
- <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
-
- <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
-
-
-
-
- <table width="795" border="0" cellspacing="0" cellpadding="0">
- <tr>
- <td><script language="JavaScript1.2">mmLoadMenus();</script>
- <table border="0" cellpadding="0" cellspacing="0" width="795">
- <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
- <tr>
- <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
- </tr>
- <tr>
- <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
- <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
- <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
- <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
- <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
- <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
- <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
- <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
- <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
- <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
- <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
- </tr>
- <tr>
- <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
- <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
- </tr>
- <tr>
- <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
- <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
- </tr>
- </table></td>
- </tr>
- <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
- <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
- <td align="right" style="white-space: nowrap">
- <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
- <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
- <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
- <input type="hidden" name="_order" value="bytitle" />
- <input type="hidden" name="basic_srchtype" value="ALL" />
- <input type="hidden" name="_satisfyall" value="ALL" />
- </form>
- </td>
- </tr></table></td></tr>
- <tr>
- <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
-
-
- <div align="center">
-
- <table width="720" class="ep_tm_main"><tr><td align="left">
- <h1 class="ep_tm_pagetitle">Presentations of factorizable inverse monoids</h1>
- <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Easdown, David</span> and <span class="person_name">East, James</span> and <span class="person_name">FitzGerald, D.G.</span> (2005) <xhtml:em>Presentations of factorizable inverse monoids.</xhtml:em> Acta Universitatis Szegediensis, Acta Scientiarum Mathematicarum, 71 (3-4). pp. 509-520.</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_1841' );" href="http://eprints.utas.edu.au/1431/1/EEF_PresentationsFactorizable.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_1841' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_1841"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/1431/thumbnails/1/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/1431/1/EEF_PresentationsFactorizable.pdf"><span class="ep_document_citation">PDF (Author Version)</span></a> - Requires a PDF viewer<br />125Kb</td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://www.math.u-szeged.hu/acta/">http://www.math.u-szeged.hu/acta/</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">It is well-known that an inverse monoid is factorizable if and only if it is a homomorphic
- image of a semidirect product of a semilattice (with identity) by a group.
- We use this structure to describe a presentation of an arbitrary factorizable inverse
- monoid in terms of presentations of its group of units and semilattice of idempotents,
- together with some other data. We apply this theory to quickly deduce a well known
- presentation of the symmetric inverse monoid on a nite set.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Factorizable inverse monoid, presentations, symmetric inverse monoid</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/230105.html">230000 Mathematical Sciences > 230100 Mathematics > 230105 Group Theory And Generalisations (Incl. Topological Groups And Lie Groups)</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1431</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Dr D. G. FitzGerald</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">23 Aug 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1431;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=1431">item control page</a></p>
- </td></tr></table>
- </div>
-
-
-
- <!-- InstanceEndEditable --></td>
- </tr>
- <tr>
- <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
- <table width="795" border="0" align="left" cellpadding="0" class="footer">
- <tr valign="top">
- <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
- </tr>
- <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
- <tr valign="top">
- <td width="68%" class="footer">Authorised by the University Librarian<br />
- © University of Tasmania ABN 30 764 374 782<br />
- <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td>
- <td width="32%"><div align="right">
- <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
- <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
- </a></p>
- </div></td>
- </tr>
- <tr valign="top">
- <td><p> </p></td>
- <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
- </tr>
- </table>
- <!-- #EndLibraryItem -->
- <div align="center"></div></td>
- </tr>
- </table>
-
- </body>
- </html>