<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head> <title>UTas ePrints - Presentations of factorizable inverse monoids</title> <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script> <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style> <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style> <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" /> <link rel="Top" href="http://eprints.utas.edu.au/" /> <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" /> <meta content="Easdown, David" name="eprints.creators_name" /> <meta content="East, James" name="eprints.creators_name" /> <meta content="FitzGerald, D.G." name="eprints.creators_name" /> <meta content="de@maths.usyd.edu.au" name="eprints.creators_id" /> <meta content="James.East@latrobe.edu.au" name="eprints.creators_id" /> <meta content="D.FitzGerald@utas.edu.au" name="eprints.creators_id" /> <meta content="article" name="eprints.type" /> <meta content="2007-08-23" name="eprints.datestamp" /> <meta content="2008-01-08 15:30:00" name="eprints.lastmod" /> <meta content="show" name="eprints.metadata_visibility" /> <meta content="Presentations of factorizable inverse monoids" name="eprints.title" /> <meta content="pub" name="eprints.ispublished" /> <meta content="230105" name="eprints.subjects" /> <meta content="public" name="eprints.full_text_status" /> <meta content="Factorizable inverse monoid, presentations, symmetric inverse monoid" name="eprints.keywords" /> <meta content="It is well-known that an inverse monoid is factorizable if and only if it is a homomorphic image of a semidirect product of a semilattice (with identity) by a group. We use this structure to describe a presentation of an arbitrary factorizable inverse monoid in terms of presentations of its group of units and semilattice of idempotents, together with some other data. We apply this theory to quickly deduce a well known presentation of the symmetric inverse monoid on a nite set." name="eprints.abstract" /> <meta content="2005" name="eprints.date" /> <meta content="published" name="eprints.date_type" /> <meta content="Acta Universitatis Szegediensis, Acta Scientiarum Mathematicarum" name="eprints.publication" /> <meta content="71" name="eprints.volume" /> <meta content="3-4" name="eprints.number" /> <meta content="509-520" name="eprints.pagerange" /> <meta content="UNSPECIFIED" name="eprints.thesis_type" /> <meta content="TRUE" name="eprints.refereed" /> <meta content="http://www.math.u-szeged.hu/acta/" name="eprints.official_url" /> <meta content="[1] S. Y. Chen and S. C. Hsieh. Factorizable Inverse Semigroups. Semigroup Forum, 8(4):283-297, 1974. [2] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups Vol II. Number 7 in Mathematical Surveys. Amer. Math. Soc., Providence, R.I., 1967. [3] E. Dombi. Almost Factorizable Straight Locally Inverse Semigroups. Acta Sci. Math. (Szeged), 69(3-4):569-589, 2003. [4] D. Easdown, J. East, and D. G. FitzGerald. Braids and Factorizable Inverse Monoids. Semigroups and Languages, eds. I.M. Araujo, M.J.J. Branco, V.H. Fernandes, and G.M.S. Gomes, World Scientific, pages 86-105, 2002. [5] D. Easdown and T. G. Lavers. The Inverse Braid Monoid. Adv. Math., 186(2):438-455, 2004. [6] J. East. The Permeable Braid Monoid. in preparation. [7] J. East. Cofull Embeddings in Coset Monoids. preprint. [8] J. East. The Factorizable Braid Monoid. Proc. Edinb. Math. Soc. (2) 49(3):609-636, 2006. [9] J. East. Factorizable Inverse Monoids of Cosets of Subgroups of Groups. Comm. Alg., 34(7):2659-2665, 2006. [10] D. G. FitzGerald and J. Leech. Dual Symmetric Inverse Semigroups and Representation Theory. J. Austral. Math. Soc., 64:146-182, 1998. [11] T. G. Lavers. Presentations of General Products of Monoids. J. Algebra, 204(2):733- 741, 1998. [12] M. V. Lawson. Inverse Semigroups. The Theory of Partial Symmetries. World Scientific Publishing Co., Inc., River Edge, NJ, 1998. [13] S. Lipscombe. Symmetric Inverse Semigroups. American Mathematical Society, Providence, R.I., 1996. [14] D. B. McAlister. Embedding Inverse Semigroups in Coset Semigroups. Semigroup Forum, 20:255-267, 1980. [15] R. N. McKenzie, G. F. McNulty, and W. F. Taylor. Algebras, Lattices, and Varieties. Volume 1. Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987. [16] John C. Meakin. An Invitation to Inverse Semigroup Theory. Proceedings of the Conference on Ordered Structures and Algebra of Computer Languages (K. P. Shum and P. C. Yuen, Eds., World Scientific, Singapore), pages 91-115, 1993. 9 [17] Janet E. Mills. Combinatorially Factorizable Inverse Monoids. Semigroup Forum, 59(2):220-232, 1999. [18] E. H. Moore. Concerning the Abstract Groups of Order k! and 1/2 k! Holohedrically Isomorphic with the Symmetric and Alternating Substitution Groups on k Letters. Proc. London Math. Soc., 28:357{366, 1897. [19] L. M. Popova. Defining Relations in some Semigroups of Partial Transformations of a Finite Set (in Russian). Uchenye Zap. Leningrad Gos. Ped. Inst., 218:191-212, 1961. [20] L. Solomon. Representations of the Rook Monoid. J. Algebra, 256(2):309-342, 2002. [21] L. Solomon. The Iwahori Algebra of Mn(Fq). A Presentation and a Representation on Tensor Space. J. Algebra, 273(1):206-226, 2004. [22] Yupaporn Tirasupa. Factorizable Transformation Semigroups. Semigroup Forum, 18(1):15-19, 1979. [23] Yupaporn Tirasupa. Weakly Factorizable Inverse Semigroups. Semigroup Forum, 18(4):283-291, 1979. [24] R. Wilkinson. A Description of E-Unitary Inverse Semigroups. Proc. Roy. Soc. Edinburgh Sect. A, 95(3-4):239-242, 1983." name="eprints.referencetext" /> <meta content="Easdown, David and East, James and FitzGerald, D.G. (2005) Presentations of factorizable inverse monoids. Acta Universitatis Szegediensis, Acta Scientiarum Mathematicarum, 71 (3-4). pp. 509-520." name="eprints.citation" /> <meta content="http://eprints.utas.edu.au/1431/1/EEF_PresentationsFactorizable.pdf" name="eprints.document_url" /> <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" /> <meta content="Presentations of factorizable inverse monoids" name="DC.title" /> <meta content="Easdown, David" name="DC.creator" /> <meta content="East, James" name="DC.creator" /> <meta content="FitzGerald, D.G." name="DC.creator" /> <meta content="230105 Group Theory And Generalisations (Incl. Topological Groups And Lie Groups)" name="DC.subject" /> <meta content="It is well-known that an inverse monoid is factorizable if and only if it is a homomorphic image of a semidirect product of a semilattice (with identity) by a group. We use this structure to describe a presentation of an arbitrary factorizable inverse monoid in terms of presentations of its group of units and semilattice of idempotents, together with some other data. We apply this theory to quickly deduce a well known presentation of the symmetric inverse monoid on a nite set." name="DC.description" /> <meta content="2005" name="DC.date" /> <meta content="Article" name="DC.type" /> <meta content="PeerReviewed" name="DC.type" /> <meta content="application/pdf" name="DC.format" /> <meta content="http://eprints.utas.edu.au/1431/1/EEF_PresentationsFactorizable.pdf" name="DC.identifier" /> <meta content="http://www.math.u-szeged.hu/acta/" name="DC.relation" /> <meta content="Easdown, David and East, James and FitzGerald, D.G. (2005) Presentations of factorizable inverse monoids. Acta Universitatis Szegediensis, Acta Scientiarum Mathematicarum, 71 (3-4). pp. 509-520." name="DC.identifier" /> <meta content="http://eprints.utas.edu.au/1431/" name="DC.relation" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/BibTeX/epprod-eprint-1431.bib" title="BibTeX" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/ContextObject/epprod-eprint-1431.xml" title="OpenURL ContextObject" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/ContextObject::Dissertation/epprod-eprint-1431.xml" title="OpenURL Dissertation" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/ContextObject::Journal/epprod-eprint-1431.xml" title="OpenURL Journal" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/DC/epprod-eprint-1431.txt" title="Dublin Core" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/DIDL/epprod-eprint-1431.xml" title="DIDL" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/EndNote/epprod-eprint-1431.enw" title="EndNote" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/HTML/epprod-eprint-1431.html" title="HTML Citation" type="text/html; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/METS/epprod-eprint-1431.xml" title="METS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/MODS/epprod-eprint-1431.xml" title="MODS" type="text/xml" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/RIS/epprod-eprint-1431.ris" title="Reference Manager" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/Refer/epprod-eprint-1431.refer" title="Refer" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/Simple/epprod-eprint-1431text" title="Simple Metadata" type="text/plain" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/Text/epprod-eprint-1431.txt" title="ASCII Citation" type="text/plain; charset=utf-8" /> <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1431/XML/epprod-eprint-1431.xml" title="EP3 XML" type="text/xml" /> </head> <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')"> <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div> <table width="795" border="0" cellspacing="0" cellpadding="0"> <tr> <td><script language="JavaScript1.2">mmLoadMenus();</script> <table border="0" cellpadding="0" cellspacing="0" width="795"> <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" --> <tr> <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td> </tr> <tr> <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td> <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td> <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td> <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td> </tr> <tr> <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td> </tr> <tr> <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td> <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td> <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td> <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td> <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td> <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td> <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td> <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td> </tr> <tr> <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td> <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td> <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td> </tr> <tr> <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td> <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td> <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td> </tr> </table></td> </tr> <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr> <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td> <td align="right" style="white-space: nowrap"> <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline"> <input class="ep_tm_searchbarbox" size="20" type="text" name="q" /> <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" /> <input type="hidden" name="_order" value="bytitle" /> <input type="hidden" name="basic_srchtype" value="ALL" /> <input type="hidden" name="_satisfyall" value="ALL" /> </form> </td> </tr></table></td></tr> <tr> <td class="toplinks"><!-- InstanceBeginEditable name="content" --> <div align="center"> <table width="720" class="ep_tm_main"><tr><td align="left"> <h1 class="ep_tm_pagetitle">Presentations of factorizable inverse monoids</h1> <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Easdown, David</span> and <span class="person_name">East, James</span> and <span class="person_name">FitzGerald, D.G.</span> (2005) <xhtml:em>Presentations of factorizable inverse monoids.</xhtml:em> Acta Universitatis Szegediensis, Acta Scientiarum Mathematicarum, 71 (3-4). pp. 509-520.</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_1841' );" href="http://eprints.utas.edu.au/1431/1/EEF_PresentationsFactorizable.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_1841' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_1841"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/1431/thumbnails/1/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/1431/1/EEF_PresentationsFactorizable.pdf"><span class="ep_document_citation">PDF (Author Version)</span></a> - Requires a PDF viewer<br />125Kb</td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://www.math.u-szeged.hu/acta/">http://www.math.u-szeged.hu/acta/</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">It is well-known that an inverse monoid is factorizable if and only if it is a homomorphic image of a semidirect product of a semilattice (with identity) by a group. We use this structure to describe a presentation of an arbitrary factorizable inverse monoid in terms of presentations of its group of units and semilattice of idempotents, together with some other data. We apply this theory to quickly deduce a well known presentation of the symmetric inverse monoid on a nite set.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Factorizable inverse monoid, presentations, symmetric inverse monoid</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/230105.html">230000 Mathematical Sciences > 230100 Mathematics > 230105 Group Theory And Generalisations (Incl. Topological Groups And Lie Groups)</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1431</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Dr D. G. FitzGerald</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">23 Aug 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1431;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=1431">item control page</a></p> </td></tr></table> </div> <!-- InstanceEndEditable --></td> </tr> <tr> <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" --> <table width="795" border="0" align="left" cellpadding="0" class="footer"> <tr valign="top"> <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td> </tr> <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr> <tr valign="top"> <td width="68%" class="footer">Authorised by the University Librarian<br /> © University of Tasmania ABN 30 764 374 782<br /> <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td> <td width="32%"><div align="right"> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p> <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br /> </a></p> </div></td> </tr> <tr valign="top"> <td><p> </p></td> <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td> </tr> </table> <!-- #EndLibraryItem --> <div align="center"></div></td> </tr> </table> </body> </html>