Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2013.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Jones, Sarah" name="eprints.creators_name" />
  14. <meta content="Herrmann, W." name="eprints.creators_name" />
  15. <meta content="Gemmell, J.B." name="eprints.creators_name" />
  16. <meta content="" name="eprints.creators_id" />
  17. <meta content="" name="eprints.creators_id" />
  18. <meta content="Bruce.Gemmell@utas.edu.au" name="eprints.creators_id" />
  19. <meta content="article" name="eprints.type" />
  20. <meta content="2007-11-08 05:09:16" name="eprints.datestamp" />
  21. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  22. <meta content="show" name="eprints.metadata_visibility" />
  23. <meta content="Short Wavelength Infrared Spectral Characteristics of the HW Horizon:
  24. Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada" name="eprints.title" />
  25. <meta content="pub" name="eprints.ispublished" />
  26. <meta content="260100" name="eprints.subjects" />
  27. <meta content="restricted" name="eprints.full_text_status" />
  28. <meta content="mineralogy, mineral chemistry, volcanic stratigraphy, seafloor mineral deposits, metallogenesis" name="eprints.keywords" />
  29. <meta content="Copyright 2005, Society of Economic Geologists." name="eprints.note" />
  30. <meta content="Short wavelength infrared (SWIR) spectrometry has been used to identify previously unmapped hydrothermal
  31. alteration zones around volcanic-hosted massive sulfide (VHMS) orebodies at Myra Falls, Vancouver Island,
  32. British Columbia. Hydrothermal alteration assemblages are uniformly dominated by fine-grained white
  33. mica, with poor development of mineralogical zonation. SWIR spectrometry is an ideal exploration tool for
  34. characterizing this fine-grained hydrothermal alteration. At Myra Falls, SWIR spectrometry has identified subtle
  35. shifts in the wavelengths of the AlOH absorption feature of white mica, corresponding to compositional
  36. changes in altered rhyolite distal and proximal to ore. AlOH absorption occurs at shorter wavelengths (<2,198
  37. nm) and corresponds to lower Fe, Fe + Mg, and Si/Al and higher Na/(Na + K) in strongly altered samples proximal
  38. to ore (slightly sodic muscovites). AlOH absorption occurs at longer wavelengths (>2,206 nm) and corresponds
  39. to higher Fe, Fe + Mg, and Si/Al and lower Na/(Na + K) in samples distal to ore (nonsodic slightly
  40. phengitic muscovites). White mica in siltstone within a meter of VHMS ore has higher Zn, V, Fe, and Mg contents
  41. than white mica distal to these altered samples. Chlorite compositions, identified by SWIR, also show systematic
  42. changes with intensity of alteration and distance from ore. The average wavelength of the FeOH absorption
  43. feature for chlorite in rhyolitic samples proximal to ore is 2,241 nm (intermediate Mg chlorite),
  44. whereas wavelengths in background samples average 2,247 nm (intermediate Fe chlorite). Similar changes are
  45. observed in footwall and hanging-wall andesites, with samples near the Battle mine containing muscovite to
  46. phengitic muscovite (average wavelength of the AlOH absorption feature of 2,200 nm) and Mg-rich chlorite
  47. (average wavelength of the FeOH absorption feature of 2,245 nm) to regional andesite samples with phengitic
  48. muscovite (average wavelengths of the AlOH absorption feature of 2,209 nm) and Fe-rich chlorite (average
  49. wavelength of the FeOH absorption feature of 2,249 nm). In weakly altered rocks white mica compositions also
  50. vary with host lithology. The AlOH absorption feature occurs at longer wavelengths in white mica in dacite and
  51. andesite compared to adjacent rhyolitic rocks, suggesting that higher Fe and Mg in the host lithology affects
  52. the composition of white mica.
  53. Two zones of intense hydrothermal alteration above the Battle and HW orebodies have distinctive SWIR
  54. spectral characteristics, with the AlOH and FeOH features occurring at shorter wavelengths (<2,197 and
  55. <2,240 nm, respectively). Small anomalous zones of alteration were also identified in the Thelwood Valley area,
  56. where minor mineralized zones are present. As broad zones of fine-grained white mica (sericite) alteration are
  57. ubiquitous throughout the Myra Falls property, alteration proximal to ore cannot be identified simply by visual
  58. logging of drill core. Alteration zonation may be determined by subtle shifts in white mica spectral characteristics.
  59. This study indicates that SWIR analysis may be an effective field-based exploration tool for quantifying
  60. the intensity of alteration associated with VHMS orebodies, and that trends in mineral compositions, even in
  61. very fine grained rocks, can be used as mine-scale vectors to ore.
  62. " name="eprints.abstract" />
  63. <meta content="2005-03" name="eprints.date" />
  64. <meta content="published" name="eprints.date_type" />
  65. <meta content="Economic Geology" name="eprints.publication" />
  66. <meta content="100" name="eprints.volume" />
  67. <meta content="2" name="eprints.number" />
  68. <meta content="273-294" name="eprints.pagerange" />
  69. <meta content="10.2113/100.2.273" name="eprints.id_number" />
  70. <meta content="TRUE" name="eprints.refereed" />
  71. <meta content="0361-0128" name="eprints.issn" />
  72. <meta content="http://dx.doi.org/10.2113/100.2.273" name="eprints.official_url" />
  73. <meta content="Barrett, T.J., and Sherlock, R.L., 1996, Volcanic stratigraphy, lithogeochemistry,
  74. and seafloor setting of the H-W massive sulfide deposit, Myra Falls,
  75. Vancouver Island, British Columbia: Exploration and Mining Geology, v. 5,
  76. p. 421–458.
  77. Cathelineau, M., 1988, Cation site occupancy in chlorites and illites as a function
  78. of termperature: Clay Minerals, v. 23, p. 471–485.
  79. Cathelineau, M., and Izquierdo, G., 1988, Temperature-composition relationships
  80. of authigenic micaceous minerals in the Los Azufres geothermal
  81. system: Contributions to Mineral and Petrology, v. 100, p. 418–428.
  82. Clark, R.N., Vance, S., and Green, R.O., 1998, Mineral mapping with imaging
  83. spectroscopy, the Ray mine, AZ: Pasadena, California, Jet Propulsion
  84. Laboratory Publication 97-21, p. 67–75.
  85. Deer, W.A., Howie, R.A., and Zussman, J., 1996, An introduction to the rockforming
  86. minerals, 2nd ed.: New York, NY, Addison Wesley Longman Ltd.,
  87. 696 p.
  88. Eugster H.P., and Yoder, H.S., 1955, The join muscovite-paragonite: Washington,
  89. Carnegie Institution Yearbook 54, p. 124–129.
  90. Gabrielse, H., and Yorath, C.J., 1991, Tectonic synthesis: Geological Survey
  91. of Canada, Geology of Canada, no. 4, v. G-2, p. 677–705.
  92. Greenwood, H.J., Woodsworth, G.J., Read, P.B., Ghent, E.D., and Evenchick,
  93. C.A., 1991, Metamorphism: Geological Survey of Canada, Geology of
  94. Canada, no. 4, v. G-2, p. 533–570.
  95. Guidotti, C.V., Sassi, F.P., and Blencoe, J.G., 1994, The effects of ferromagnesian
  96. components on the paragonite-muscovite solvus: A semiquantitative
  97. analysis based on chemical data for natural paragonite-muscovite pairs:
  98. Journal of Metamorphic Geology, v. 12, p. 779–788.
  99. Hannington, M.D., Galley, A.D., Herzig, P.M. and Petersen, S., 1998, Comparison
  100. of the TAG Mound and stockwork complex with Cyprus-type massive
  101. sulfide deposits: Proceedings of the Ocean Drilling Program, Scientific
  102. Results, v. 158, p. 389–415.
  103. Herrmann, W., Blake, M., Doyle, M., Huston, D., Kamprad, J., Merry, N.
  104. and Pontual, S., 2001, Short wavelength infrared (SWIR) spectral analysis
  105. of hydrothermal alteration zones associated with base metal sulfide deposits
  106. at Rosebery and Western Tharsis, Tasmania, and Highway-Reward,
  107. Queensland: ECONOMIC GEOLOGY, v. 96, p. 939–955.
  108. Huston, D.L., Kamprad, J., and Brauhart, C., 1999, Definition of high-temperature
  109. alteration zones with PIMA: An example from the Panorama VHMS district,
  110. central Pilbara craton: AGSO Research Newsletter 30, p. 10–12.
  111. Jones, S.A., 2002, Geology and geochemistry of caprocks at Myra Falls
  112. VHMS camp, Vancouver Island, B.C., Canada: Unpublished Ph.D. thesis,
  113. Hobart, CODES, University of Tasmania, 511 p.
  114. Jones, S.A., and Berry, R., 2001, Recognition of early growth structures after
  115. multiple deformation episodes at Myra Falls VHMS camp, Vancouver Island,
  116. B.C., Canada [abs.]: Geological Society of Australia Special Publiction
  117. 64, p. 101–102.
  118. Jones, S.A., Gemmell, J.B., Davidson, G.J., and Boliden-Westmin geological
  119. staff, 2000, Geological and geochemical characteristics of siliceous “cap
  120. rocks,” Myra Falls VHMS camp, Vancouver Island, B.C., Canada [abs.]:
  121. Tasmania, University of Tasmania, Centre for Ore Deposit Research Special
  122. Publication 3, p. 105–106.
  123. Juras, S.J., 1987, Geology of the polymetallic volcanogenic Buttle Lake camp,
  124. with emphasis on the Price hillside, Central Vancouver Island, British Columbia,
  125. Canada: Unpublished Ph.D. thesis, Vancouver, BC, University of
  126. British Columbia, 278 p.
  127. Juras, S.G., and Pearson, C.A., 1990a, The Buttle Lake camp, Central Vancouver
  128. Island, B.C: Geological Survey of Canada Open File 2167, p.
  129. 145–161.
  130. ——1990b, Mineral deposits of the southern Canadian Cordillera: Geological
  131. Association of Canada-Mineral Association of Canada Joint Meeting,
  132. Vancouver, BC, 1990, Field Trip Guidebook B2, p. 1–21.
  133. Leistel, J.M., Marcoux, E., Thieblemont, D., Quesada C., Sanchez, A., Alomdovar,
  134. G.R., Pascual, E., and Saez, R., 1998, The volcanic hosted massive sulfide
  135. deposits of the Iberian Pyrite Belt: Mineralium Deposita, v. 33, p. 2–30.
  136. Massey, N.W.D., 1992, Geology and mineral resources of the Duncan sheet,
  137. Vancouver Island: Geological Survey of Canada Report 92B/13, 57 p.
  138. McLeod, R.L., and Stanton, R.L., 1984, Phyllosilicates and associated minerals
  139. in some Paleozoic stratiform sulfide deposits of southeastern Australia:
  140. ECONOMIC GEOLOGY, v. 79, p. 1–21.
  141. Merry, N.J., and Pontual, S., 1998, The spectral geologist, v. 1.0, User’s manual:
  142. Kew, Victoria 3101, Australia, Ausspec International Pty. Ltd., 90 p.
  143. Muller, J.E., 1980, The Paleozoic Sicker Group of Vancouver Island, British
  144. Columbia: Geological Survey of Canada Paper 79-30, 22 p.
  145. Pearson, C.A., 1993, Mining zinc-rich massive sulphide deposits on Vancouver
  146. Island, British Columbia [abs.]: World Zinc ’93 International Symposium,
  147. Hobart, Australia, Australasian Institute of Mining and Metallurgy,
  148. Proceedings, v. 7, p. 75–84.
  149. Pearson, C.A., Juras, S.J. and McKinley, S.D., 1997, Paleotopography and ore
  150. zonation of the H-W and Battle Zn-Cu-Au-Ag VMS deposits, Myra Falls
  151. camp, Vancouver Island, British Columbia, Canada: Society of Economic
  152. Geologists Field Conference, Neves Corvo, Lisbon, Portugal, 67 p.
  153. Plimer, I.R., and de Carvalho, D., 1982, The geochemistry of hydrothermal
  154. alteration at the Salgadinho copper deposit, Portugal: Mineralium Deposita,
  155. v. 17, p. 193–211.
  156. Pontual, S., Merry, N., and Gamson, P., 1997a, G-Mex Vol. 1, Spectral interpretation
  157. field manual: Kew, Victoria 3101, Australia, Ausspec International
  158. Pty. Ltd., 169 p.
  159. ——1997b, G-Mex Vol. 7, Volcanic-hosted massive sulfide systems: Kew,
  160. Victoria 3101, Australia, Ausspec International Pty. Ltd., 43 p.
  161. Post, J.L., and Noble, P.L., 1993, The near-infrared combination band frequencies
  162. of dioctohedral smectites, micas and illites: Clays and Clay Minerals,
  163. v. 41, p. 639–644.
  164. Robinson, M., Godwin, C.I., and Stanley, C.R., 1996, Geology, lithogeochemisty,
  165. and alteration of the Battle volcanogenic massive sulfide zone,
  166. Buttle Lake mining camp, Vancouver Island, British Columbia: ECONOMIC
  167. GEOLOGY, v. 91, p. 527–548.
  168. Sinclair, B.J., 2000, Geology and genesis of the Battle zone VHMS deposits,
  169. Myra Falls district, British Columbia, Canada: Unpublished Ph.D. thesis,
  170. Hobart, University of Tasmania, 321 p.
  171. Sinclair, B.J., Berry, R.F., and Gemmell, J.B., 2000a, Mineralogy and textures
  172. of the Battle zone massive sulfide lenses, Myra Falls district, British Columbia,
  173. Canada [abs.]: Tasmania, University of Tasmania, Centre for Ore
  174. Deposit Research Special Publication 3, p. 197–199.
  175. Sinclair, B.J., Gemmell, J.B. and Berry, R.F., 2000b, Formation of the Battle
  176. mine massive sulfide deposits, Myra Falls, VHMS district, Vancouver
  177. Island, B.C., Canada [abs.]: Tasmania, University of Tasmania, Centre for
  178. Ore Deposit Research Special Publication 3, p. 195–196.
  179. Thompson, A.J.B., Hauff, P.L., Robitaille, A.J., 1999, Alteration mapping in
  180. exploration: Application of short-wave infrared (SWIR) spectroscopy: Society
  181. of Economic Geologists Newsletter 39, p. 1, 16–27.
  182. Velde, B., 1965, Phengite micas: Synthesis, stability, and natural occurrence:
  183. American Journal of Science, v. 263, p. 886–913.
  184. " name="eprints.referencetext" />
  185. <meta content="Jones, Sarah and Herrmann, W. and Gemmell, J.B. (2005) Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100 (2). pp. 273-294. ISSN 0361-0128" name="eprints.citation" />
  186. <meta content="http://eprints.utas.edu.au/2013/1/Jones2C_Herrmann2C_Gemmell_ECON_GEOL_2005.pdf" name="eprints.document_url" />
  187. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  188. <meta content="Short Wavelength Infrared Spectral Characteristics of the HW Horizon:
  189. Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada" name="DC.title" />
  190. <meta content="Jones, Sarah" name="DC.creator" />
  191. <meta content="Herrmann, W." name="DC.creator" />
  192. <meta content="Gemmell, J.B." name="DC.creator" />
  193. <meta content="260100 Geology" name="DC.subject" />
  194. <meta content="Short wavelength infrared (SWIR) spectrometry has been used to identify previously unmapped hydrothermal
  195. alteration zones around volcanic-hosted massive sulfide (VHMS) orebodies at Myra Falls, Vancouver Island,
  196. British Columbia. Hydrothermal alteration assemblages are uniformly dominated by fine-grained white
  197. mica, with poor development of mineralogical zonation. SWIR spectrometry is an ideal exploration tool for
  198. characterizing this fine-grained hydrothermal alteration. At Myra Falls, SWIR spectrometry has identified subtle
  199. shifts in the wavelengths of the AlOH absorption feature of white mica, corresponding to compositional
  200. changes in altered rhyolite distal and proximal to ore. AlOH absorption occurs at shorter wavelengths (<2,198
  201. nm) and corresponds to lower Fe, Fe + Mg, and Si/Al and higher Na/(Na + K) in strongly altered samples proximal
  202. to ore (slightly sodic muscovites). AlOH absorption occurs at longer wavelengths (>2,206 nm) and corresponds
  203. to higher Fe, Fe + Mg, and Si/Al and lower Na/(Na + K) in samples distal to ore (nonsodic slightly
  204. phengitic muscovites). White mica in siltstone within a meter of VHMS ore has higher Zn, V, Fe, and Mg contents
  205. than white mica distal to these altered samples. Chlorite compositions, identified by SWIR, also show systematic
  206. changes with intensity of alteration and distance from ore. The average wavelength of the FeOH absorption
  207. feature for chlorite in rhyolitic samples proximal to ore is 2,241 nm (intermediate Mg chlorite),
  208. whereas wavelengths in background samples average 2,247 nm (intermediate Fe chlorite). Similar changes are
  209. observed in footwall and hanging-wall andesites, with samples near the Battle mine containing muscovite to
  210. phengitic muscovite (average wavelength of the AlOH absorption feature of 2,200 nm) and Mg-rich chlorite
  211. (average wavelength of the FeOH absorption feature of 2,245 nm) to regional andesite samples with phengitic
  212. muscovite (average wavelengths of the AlOH absorption feature of 2,209 nm) and Fe-rich chlorite (average
  213. wavelength of the FeOH absorption feature of 2,249 nm). In weakly altered rocks white mica compositions also
  214. vary with host lithology. The AlOH absorption feature occurs at longer wavelengths in white mica in dacite and
  215. andesite compared to adjacent rhyolitic rocks, suggesting that higher Fe and Mg in the host lithology affects
  216. the composition of white mica.
  217. Two zones of intense hydrothermal alteration above the Battle and HW orebodies have distinctive SWIR
  218. spectral characteristics, with the AlOH and FeOH features occurring at shorter wavelengths (<2,197 and
  219. <2,240 nm, respectively). Small anomalous zones of alteration were also identified in the Thelwood Valley area,
  220. where minor mineralized zones are present. As broad zones of fine-grained white mica (sericite) alteration are
  221. ubiquitous throughout the Myra Falls property, alteration proximal to ore cannot be identified simply by visual
  222. logging of drill core. Alteration zonation may be determined by subtle shifts in white mica spectral characteristics.
  223. This study indicates that SWIR analysis may be an effective field-based exploration tool for quantifying
  224. the intensity of alteration associated with VHMS orebodies, and that trends in mineral compositions, even in
  225. very fine grained rocks, can be used as mine-scale vectors to ore.
  226. " name="DC.description" />
  227. <meta content="2005-03" name="DC.date" />
  228. <meta content="Article" name="DC.type" />
  229. <meta content="PeerReviewed" name="DC.type" />
  230. <meta content="application/pdf" name="DC.format" />
  231. <meta content="http://eprints.utas.edu.au/2013/1/Jones2C_Herrmann2C_Gemmell_ECON_GEOL_2005.pdf" name="DC.identifier" />
  232. <meta content="http://dx.doi.org/10.2113/100.2.273" name="DC.relation" />
  233. <meta content="Jones, Sarah and Herrmann, W. and Gemmell, J.B. (2005) Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100 (2). pp. 273-294. ISSN 0361-0128" name="DC.identifier" />
  234. <meta content="http://eprints.utas.edu.au/2013/" name="DC.relation" />
  235. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/BibTeX/epprod-eprint-2013.bib" title="BibTeX" type="text/plain" />
  236. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/ContextObject/epprod-eprint-2013.xml" title="OpenURL ContextObject" type="text/xml" />
  237. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/ContextObject::Dissertation/epprod-eprint-2013.xml" title="OpenURL Dissertation" type="text/xml" />
  238. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/ContextObject::Journal/epprod-eprint-2013.xml" title="OpenURL Journal" type="text/xml" />
  239. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/DC/epprod-eprint-2013.txt" title="Dublin Core" type="text/plain" />
  240. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/DIDL/epprod-eprint-2013.xml" title="DIDL" type="text/xml" />
  241. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/EndNote/epprod-eprint-2013.enw" title="EndNote" type="text/plain" />
  242. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/HTML/epprod-eprint-2013.html" title="HTML Citation" type="text/html; charset=utf-8" />
  243. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/METS/epprod-eprint-2013.xml" title="METS" type="text/xml" />
  244. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/MODS/epprod-eprint-2013.xml" title="MODS" type="text/xml" />
  245. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/RIS/epprod-eprint-2013.ris" title="Reference Manager" type="text/plain" />
  246. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/Refer/epprod-eprint-2013.refer" title="Refer" type="text/plain" />
  247. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/Simple/epprod-eprint-2013text" title="Simple Metadata" type="text/plain" />
  248. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/Text/epprod-eprint-2013.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  249. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2013/XML/epprod-eprint-2013.xml" title="EP3 XML" type="text/xml" />
  250.  
  251. </head>
  252. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  253. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  254.  
  255.  
  256.  
  257.  
  258. <table width="795" border="0" cellspacing="0" cellpadding="0">
  259. <tr>
  260. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  261. <table border="0" cellpadding="0" cellspacing="0" width="795">
  262. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  263. <tr>
  264. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  265. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  266. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  267. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  268. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  269. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  270. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  271. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  272. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  273. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  274. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  275. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  276. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  277. </tr>
  278. <tr>
  279. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  280. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  281. </tr>
  282. <tr>
  283. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  284. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  285. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  286. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  287. </tr>
  288. <tr>
  289. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  290. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  291. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  292. </tr>
  293. <tr>
  294. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  295. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  296. </tr>
  297. <tr>
  298. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  299. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  300. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  301. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  302. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  303. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  304. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  305. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  306. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  307. </tr>
  308. <tr>
  309. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  310. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  311. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  312. </tr>
  313. <tr>
  314. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  315. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  316. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  317. </tr>
  318. </table></td>
  319. </tr>
  320. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  321. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  322. <td align="right" style="white-space: nowrap">
  323. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  324. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  325. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  326. <input type="hidden" name="_order" value="bytitle" />
  327. <input type="hidden" name="basic_srchtype" value="ALL" />
  328. <input type="hidden" name="_satisfyall" value="ALL" />
  329. </form>
  330. </td>
  331. </tr></table></td></tr>
  332. <tr>
  333. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  334.  
  335.  
  336. <div align="center">
  337. <table width="720" class="ep_tm_main"><tr><td align="left">
  338. <h1 class="ep_tm_pagetitle">Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada</h1>
  339. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Jones, Sarah</span> and <span class="person_name">Herrmann, W.</span> and <span class="person_name">Gemmell, J.B.</span> (2005) <xhtml:em>Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada.</xhtml:em> Economic Geology, 100 (2). pp. 273-294. ISSN 0361-0128</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2013/1/Jones2C_Herrmann2C_Gemmell_ECON_GEOL_2005.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2013/1/Jones2C_Herrmann2C_Gemmell_ECON_GEOL_2005.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />1175Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="3098" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.2113/100.2.273">http://dx.doi.org/10.2113/100.2.273</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Short wavelength infrared (SWIR) spectrometry has been used to identify previously unmapped hydrothermal&#13;
  340. alteration zones around volcanic-hosted massive sulfide (VHMS) orebodies at Myra Falls, Vancouver Island,&#13;
  341. British Columbia. Hydrothermal alteration assemblages are uniformly dominated by fine-grained white&#13;
  342. mica, with poor development of mineralogical zonation. SWIR spectrometry is an ideal exploration tool for&#13;
  343. characterizing this fine-grained hydrothermal alteration. At Myra Falls, SWIR spectrometry has identified subtle&#13;
  344. shifts in the wavelengths of the AlOH absorption feature of white mica, corresponding to compositional&#13;
  345. changes in altered rhyolite distal and proximal to ore. AlOH absorption occurs at shorter wavelengths (&lt;2,198&#13;
  346. nm) and corresponds to lower Fe, Fe + Mg, and Si/Al and higher Na/(Na + K) in strongly altered samples proximal&#13;
  347. to ore (slightly sodic muscovites). AlOH absorption occurs at longer wavelengths (&gt;2,206 nm) and corresponds&#13;
  348. to higher Fe, Fe + Mg, and Si/Al and lower Na/(Na + K) in samples distal to ore (nonsodic slightly&#13;
  349. phengitic muscovites). White mica in siltstone within a meter of VHMS ore has higher Zn, V, Fe, and Mg contents&#13;
  350. than white mica distal to these altered samples. Chlorite compositions, identified by SWIR, also show systematic&#13;
  351. changes with intensity of alteration and distance from ore. The average wavelength of the FeOH absorption&#13;
  352. feature for chlorite in rhyolitic samples proximal to ore is 2,241 nm (intermediate Mg chlorite),&#13;
  353. whereas wavelengths in background samples average 2,247 nm (intermediate Fe chlorite). Similar changes are&#13;
  354. observed in footwall and hanging-wall andesites, with samples near the Battle mine containing muscovite to&#13;
  355. phengitic muscovite (average wavelength of the AlOH absorption feature of 2,200 nm) and Mg-rich chlorite&#13;
  356. (average wavelength of the FeOH absorption feature of 2,245 nm) to regional andesite samples with phengitic&#13;
  357. muscovite (average wavelengths of the AlOH absorption feature of 2,209 nm) and Fe-rich chlorite (average&#13;
  358. wavelength of the FeOH absorption feature of 2,249 nm). In weakly altered rocks white mica compositions also&#13;
  359. vary with host lithology. The AlOH absorption feature occurs at longer wavelengths in white mica in dacite and&#13;
  360. andesite compared to adjacent rhyolitic rocks, suggesting that higher Fe and Mg in the host lithology affects&#13;
  361. the composition of white mica.&#13;
  362. Two zones of intense hydrothermal alteration above the Battle and HW orebodies have distinctive SWIR&#13;
  363. spectral characteristics, with the AlOH and FeOH features occurring at shorter wavelengths (&lt;2,197 and&#13;
  364. &lt;2,240 nm, respectively). Small anomalous zones of alteration were also identified in the Thelwood Valley area,&#13;
  365. where minor mineralized zones are present. As broad zones of fine-grained white mica (sericite) alteration are&#13;
  366. ubiquitous throughout the Myra Falls property, alteration proximal to ore cannot be identified simply by visual&#13;
  367. logging of drill core. Alteration zonation may be determined by subtle shifts in white mica spectral characteristics.&#13;
  368. This study indicates that SWIR analysis may be an effective field-based exploration tool for quantifying&#13;
  369. the intensity of alteration associated with VHMS orebodies, and that trends in mineral compositions, even in&#13;
  370. very fine grained rocks, can be used as mine-scale vectors to ore.&#13;
  371. </p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">Copyright 2005, Society of Economic Geologists.</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">mineralogy, mineral chemistry, volcanic stratigraphy, seafloor mineral deposits, metallogenesis</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2013</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">08 Nov 2007 16:09</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2013;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2013">item control page</a></p>
  372. </td></tr></table>
  373. </div>
  374.  
  375.  
  376.  
  377. <!-- InstanceEndEditable --></td>
  378. </tr>
  379. <tr>
  380. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  381. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  382. <tr valign="top">
  383. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  384. </tr>
  385. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  386. <tr valign="top">
  387. <td width="68%" class="footer">Authorised by the University Librarian<br />
  388. © University of Tasmania ABN 30 764 374 782<br />
  389. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  390. <td width="32%"><div align="right">
  391. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  392. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  393. </a></p>
  394. </div></td>
  395. </tr>
  396. <tr valign="top">
  397. <td><p>  </p></td>
  398. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  399. </tr>
  400. </table>
  401. <!-- #EndLibraryItem -->
  402. <div align="center"></div></td>
  403. </tr>
  404. </table>
  405.  
  406. </body>
  407. </html>