Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2451.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia)</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Kamenetsky, V.S." name="eprints.creators_name" />
  14. <meta content="Kamenetsky, M.B." name="eprints.creators_name" />
  15. <meta content="Sharygin, V.V." name="eprints.creators_name" />
  16. <meta content="Faure, K." name="eprints.creators_name" />
  17. <meta content="Golovin, A.V." name="eprints.creators_name" />
  18. <meta content="dima.kamenetsky@utas.edu.au" name="eprints.creators_id" />
  19. <meta content="" name="eprints.creators_id" />
  20. <meta content="" name="eprints.creators_id" />
  21. <meta content="" name="eprints.creators_id" />
  22. <meta content="" name="eprints.creators_id" />
  23. <meta content="article" name="eprints.type" />
  24. <meta content="2007-11-14 02:58:52" name="eprints.datestamp" />
  25. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  26. <meta content="show" name="eprints.metadata_visibility" />
  27. <meta content="Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia)" name="eprints.title" />
  28. <meta content="pub" name="eprints.ispublished" />
  29. <meta content="260300" name="eprints.subjects" />
  30. <meta content="260100" name="eprints.subjects" />
  31. <meta content="restricted" name="eprints.full_text_status" />
  32. <meta content="kimberlite, immiscibility, chloride, carbonate, melt inclusions, carbon and oxygen isotopes, oldoinyo-lengai, Yakutian kimberlites, melt inclusions, unaltered kimberlites, isotopic evidence, alkali chlorides, mantle fluid" name="eprints.keywords" />
  33. <meta content="The definitive version is available at http://www.sciencedirect.com
  34. " name="eprints.note" />
  35. <meta content="The compositions of parental magmas forming kimberlitic rocks remain largely unknown because of masking effects of syneruptive contamination and degassing, and post-magmatic alteration. Among most affected elements are volatiles (H2O and CO2) and alkalies (Na and K). This study attempts to overcome the problems related to the alteration of kimberlites by detailed petrographic and chemical analyses of exceptionally fresh, and thus essentially anhydrous (< 0.5 wt.% H2O), kimberlite samples from the Udachnaya-East pipe (Daldyn-Alakit region, Siberia). The groundmass of these kimberlites contains abundant carbonate (calcite, shortite, zemkorite) and chloride (halite, sylvite) minerals, cementing olivine phenocrysts, and forming round segregations (&quot;nodules&quot;). The nodules, belonging to the chloride and chloride-carbonate types, show no evidence of thermometamorphic effects on the contacts with the host kimberlite. The chloride-carbonate nodules demonstrate liquid immiscibility textures that are remarkably similar to those observed in the olivine-hosted chloride-carbonate melt inclusions at similar to 600 degrees C. The similarity of oxygen and carbon isotope values of carbonates from the groundmass and nodules (delta O-18 12.5 to 13.9 parts per thousand VSMOW; delta C-13 -3.7 to -2.7 parts per thousand VPDB) points to their common origin at similar temperatures. We argue for crystallisation of the chloride-carbonate nodules from residual kimberlite melts, pooled after exhaustion of the silicate melt component. The enrichment of the residual melt in alkali carbonate and chloride is partly reflected in the bulk groundmass compositions (10-11 wt.% CO2, 2.3-3.2 wt.% Cl, 2.6-3.7 wt.% Na, and 1.6-2.0 wt.% K). We propose that this enrichment is inherited from the kimberlite parental magma, and it can be responsible for the kimberlite low liquidus temperatures, low viscosities, and rapid emplacement. " name="eprints.abstract" />
  36. <meta content="2007-05-05" name="eprints.date" />
  37. <meta content="published" name="eprints.date_type" />
  38. <meta content="Chemical Geology" name="eprints.publication" />
  39. <meta content="237" name="eprints.volume" />
  40. <meta content="3-4" name="eprints.number" />
  41. <meta content="384-400" name="eprints.pagerange" />
  42. <meta content="doi:10.1016/j.chemgeo.2006.07.010" name="eprints.id_number" />
  43. <meta content="TRUE" name="eprints.refereed" />
  44. <meta content="0009-2541" name="eprints.issn" />
  45. <meta content="http://dx.doi.org/10.1016/j.chemgeo.2006.07.010" name="eprints.official_url" />
  46. <meta content="
  47. Becker, M., le Roex, A.P., 2006. Geochemistry of South African onand
  48. off-craton, Group I and Group II kimberlites: petrogenesis and
  49. source region evolution. J. Petrol. 47, 673–703.
  50. Bell, K., Dawson, J.B., 1995. An assessment of the alleged role of
  51. evaporites and saline brines in the origin of natrocarbonatites. In: Bell,
  52. K., Keller, J. (Eds.), Carbonatite Volcanism: Oldoinyo Lengai and
  53. Petrogenesis of Natrocarbonatites. Springer-Verlag, pp. 137–147.
  54. Bogatikov, O.A., Kononova, V.A., Golubeva, Y.Y., Zinchuk, N.N.,
  55. Ilupin, I.P., Rotman, A.Y., Levsky, L.K., Ovchinnikova, G.V.,
  56. Kondrashov, I.A., 2004. Variations in chemical and isotopic
  57. compositions of the Yakutian kimberlites and their causes.
  58. Geochem. Int. 42, 799–821.
  59. Brasier, M.D., Sukhov, S.S., 1998. The falling amplitude of carbon
  60. isotopic oscillations through the lower to middle Cambrian:
  61. northern Siberia data. Can. J. Earth Sci. 35, 353–373.
  62. Bulanova, G.P., Griffin, W.J., Ryan, C.G., 1998. Nucleation
  63. environment of diamonds from Yakutian kimberlites. Mineral.
  64. Mag. 62, 409–419.
  65. Burgess, R., Turner, G., Harris, J.W., 1992. 40Ar–39Ar laser probe
  66. studies of clinopyroxene inclusions in eclogitic diamonds.
  67. Geochim. Cosmochim. Acta 56, 389–402.
  68. Carroll, M.R., Webster, J.D., 1994. Solubilities of sulfur, noble gases,
  69. nitrogen, chlorine, and fluorine in magmas. In: Carroll, M.R.,
  70. Holloway, J.R. (Eds.), Volatiles in Magmas. Reviews in Mineralogy.
  71. Mineralogical Society of America,Washington, pp. 231–279.
  72. Chevychelov, V.Y., Simakin, A.G., Bondarenko, G.V., 2003. Mechanism
  73. of chlorine dissolution in water-saturated model granodiorite
  74. melt: applications of IR spectroscopic methods. Geochem. Int.
  75. 41, 395–409.
  76. Clarke, M.G.C., Roberts, B., 1986. Carbonated melilitites and
  77. calcitized alkalicarbonatites from Homa Mountain, western
  78. Kenya: a reinterpretation. Geol. Mag. 123, 683–692.
  79. Clarke, D.B., Pe, G.G., Mackay, R.M., Gill, K.R., O'Hara, M.J., Gard,
  80. J.A., 1977. A new potassium–iron–nickel sulphide from a nodule
  81. in kimberlite. Earth Planet. Sci. Lett. 35, 421–428.
  82. Clarke, D.B., Mitchell, R.H., Chapman, C.A.T., MacKay, R.M., 1994.
  83. Occurrence and origin of djerfisherite from the Elwin Bay
  84. kimberlite. Somerset Island, Northwest Territories. Can. Mineral.
  85. 32, 815–823.
  86. Clement, C.R., Skinner, E.M.W., Scott Smith, B.H., 1984. Kimberlite
  87. re-defined. J. Geol. 32, 223–228.
  88. Cooper, A.F., Gittins, J., Tuttle, O.F., 1975. The system Na2CO3–
  89. K2CO3–CaCO3 at 1 kilobar and its significance in carbonatite
  90. petrogenesis. Am. J. Sci. 275, 534–560.
  91. Dawson, J.B., 1962. The geology of Oldoinyo Lengai. Bull. Volcanol.
  92. 24, 349–387.
  93. Dawson, J.B., 1989. Sodium carbonatite extrusions from Oldoinyo
  94. Lengai, Tanzania: implications for carbonatite complex genesis.
  95. In: Bell, K. (Ed.), Carbonatites. Genesis and Evolution. Unwin
  96. Hyman, London, pp. 255–277.
  97. Dawson, J.B., Garson, M.S., Roberts, B., 1987. Altered former alkalic
  98. carbonatite lava from Oldoinyo Lengai, Tanzania: inferences for
  99. calcite carbonatite lavas. Geology 15, 765–768.
  100. Dawson, J.B., Pinkerton, H., Norton, G.E., Pyle, D.M., 1990.
  101. Physicochemical properties of alkali carbonatite lavas: data from
  102. the 1988 Eruption of Oldoinyo Lengai, Tanzania. Geology 18,
  103. 260–263.
  104. Dawson, J.B., Pinkerton, H., Norton, G.E., Pyle, D.M., Browning, P.,
  105. Jackson, D., Fallick, A.E., 1995. Petrology and geochemistry of
  106. Oldoinyo Lengai lavas extruded in November 1988: magma
  107. source, ascent and crystallization. In: Bell, K., Keller, J. (Eds.),
  108. Carbonatite Volcanism: Oldoinyo Lengai and Petrogenesis of
  109. Natrocarbonatites. Springer-Verlag, pp. 47–69.
  110. Deans, T., Roberts, B., 1984. Carbonatite tuffs and lava clasts of the
  111. Tinderet foothills, western Kenya: a study of calcified natrocarbonatites.
  112. J. Geol. Soc. (Lond.) 141, 563–580.
  113. Deines, P., 1989. Stable isotope variations in carbonatites. In: Bell, K.
  114. (Ed.), Carbonatites. Genesis and Evolution. Unwin Hyman,
  115. London, pp. 301–359.
  116. Deines, P., Gold, D.P., 1973. The isotopic composition of carbonatite
  117. and kimberlite carbonates and their bearing on the isotopic
  118. composition of deep-seated carbon. Geochim. Cosmochim. Acta
  119. 37, 1709–1733.
  120. Dobrovol'skaya, M.G., Tsepin, A.I., Ilupin, I.P., Ponomarenko, A.I.,
  121. 1975. Djerfisherite from the kimberlites of Yakutia. In: Tatarinov,
  122. P.M. (Ed.), Paragenesis of Minerals in Magmatic Deposits. Nauka,
  123. Leningrad, Russia, pp. 3–11.
  124.  
  125. Drozdov, A.V., Egorov, K.N., Gotovtsev, S.P., Klimovsky, I.V., 1989.
  126. Hydrogeological structure and hydrochemical zonation of the
  127. Udachnaya kimberlite pipe. In: Anisimova, N.P. (Ed.), Combined
  128. Permafrost and Hydrogeological Studies. Institute of Permafrost,
  129. Siberian Branch of Academy of Sciences, Yakutsk, pp. 146–155.
  130. Egorov, K.N., Ushchapovskaia, Z.F., Kashaev, A.A., Bogdanov, G.V.,
  131. Sizykh, I.I., 1988. Zemkorite — a new carbonate from Yakutian
  132. kimberlites. Dokl. Akad. Nauk SSSR 301, 188–192.
  133. Fedortchouk, Y., Canil, D., 2004. Intensive variables in kimberlite
  134. magmas, Lac de Gras, Canada and implications for diamond
  135. survival. J. Petrol. 45, 1725–1745.
  136. Fraser, K.J., Hawkesworth, C.J., Erlank, A.J., Mitchel, R.H., Scott-
  137. Smith, B.H., 1985. Sr, Nd, and Pb isotope and minor element
  138. geochemistry of lamproites and kimberlites. Earth Planet. Sci. Lett.
  139. 76, 57–70.
  140. Fuchs, L.H., 1966. Djersherite, alkali copper–iron sulfide: a new
  141. mineral from enstatite chondrites. Science 153, 166–167.
  142. Fulignati, P.,Kamenetsky,V.S.,Marianelli, P., Sbrana, A.,Mernagh, T.P.,
  143. 2001. Melt inclusion record of immiscibility between silicate,
  144. hydrosaline and carbonate melts: applications to skarn genesis at
  145. Mount Vesuvius. Geology 29, 1043–1046.
  146. Galimov, E.M., Ukhanov, A.V., 1989. Nature of carbonate component
  147. of kimberlites. Geokhimiya 3, 337–348.
  148. Gittins, J., 1989. The origin and evolution of carbonatite magmas. In:
  149. Bell, K. (Ed.), Carbonatites. Genesis and Evolution. Unwin
  150. Hyman, London, pp. 580–599.
  151. Gittins, J., McKie, D., 1980. Alkalic carbonatite magmas: Oldoinyo
  152. Lengai and its wider applicability. Lithos 13, 213–215.
  153. Golovin, A.V., Sharygin, V.V., Pokhilenko, L.N., Mal'kovets, V.G.,
  154. Kolesov, B.A., Sobolev, N.V., 2003. Secondary melt inclusions in
  155. olivine from unaltered kimberlites of the Udachnaya-East pipe,
  156. Yakutia. Trans. (Doklady) Russ. Acad. Sci. 388, 93–96.
  157. Harris, M., le Roex, A., Class, C., 2004. Geochemistry of the
  158. Uintjiesberg kimberlite, South Africa: petrogenesis of an offcraton,
  159. group I, kimberlite. Lithos 74, 149–165.
  160. Hay, R.L., 1983. Natrocarbonatite tephra of Kerimasi volcano,
  161. Tanzania. Geology 11, 599–602.
  162. Izraeli, E.S.,Harris, J.W.,Navon,O., 2001.Brine inclusions in diamonds:
  163. a new upper mantle fluid. Earth Planet. Sci. Lett. 187, 323–332.
  164. Izraeli, E.S., Harris, J.W., Navon, O., 2004. Fluid and mineral
  165. inclusions in cloudy diamonds from Koffiefontein, South Africa.
  166. Geochim. Cosmochim. Acta 68, 2561–2575.
  167. Jago, B.C., Gittins, J., 1991. The role of fluorine in carbonatite magma
  168. evolution. Nature 349, 56–58.
  169. Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, R.,
  170. Danyushevsky, L.V., Thomas, R., Sobolev, N.V., Pokhilenko, N.P.,
  171. 2004. Kimberlite melts rich in alkali chlorides and carbonates: a
  172. potent metasomatic agent in the mantle. Geology 32, 845–848.
  173. Keller, J., Krafft, M., 1990. Effusive natrocarbonatite activity of
  174. Oldoinyo Lengai, June 1988. Bull. Volcanol. 52, 629–645.
  175. Keller, J., Spettel, B., 1995. The trace element compositions and
  176. petrogenesis of natrocarbonatites. In: Bell, K., Keller, J. (Eds.),
  177. Carbonatite Volcanism: Oldoinyo Lengai and Petrogenesis of
  178. Natrocarbonatites. Springer-Verlag, pp. 70–86.
  179. Kinny, P.D., Griffin, W.L., Heaman, L.M., Brakhfogel, F.F., Spetsius,
  180. Z.V., 1997. SHRIMP U–Pb ages of perovskite from Yakutian
  181. kimberlites. Russ. Geol. Geophys. 38, 91–99.
  182. Kirkley, M.B., Smith, H.S., Gurney, J.J., 1989. Kimberlite carbonates—
  183. a carbon and oxygen stable isotope study. In: Ross, J., et al. (Ed.),
  184. Kimberlites and Related Rocks: Their Composition, Occurrence,
  185. Origin and Emplacement, vol. 1. Blackwell Scientific Publications,
  186. Sydney, pp. 264–281.
  187. Klein-BenDavid, O., Izraeli, E.S., Hauri, E.H., Navon, O., 2004.
  188. Mantle fluid evolution — a tale of one diamond. Lithos 77,
  189. 243–253.
  190. Kobelski, B.J., Gold, D.P., Deines, P., 1979. Variations in stable
  191. isotope compositions for carbon and oxygen in some South
  192. African and Lesothan kimberlites. In: Boyd, F.R., Meyer, H.O.A.
  193. (Eds.), Kimberlites, Diatremes and Diamonds: Their Geology,
  194. Petrology, and Geochemistry. American Geophysical Union,
  195. Washington, DC, pp. 252–271.
  196. Krafft, M., Keller, J., 1989. Temperature measurements in carbonatite
  197. lava lakes and flows from Oldoinyo Lengai, Tanzania. Science
  198. 245, 168–170.
  199. le Roex, A.P., Bell, D.R., Davis, P., 2003. Petrogenesis of group I
  200. kimberlites from Kimberley, South Africa: evidence from bulkrock
  201. geochemistry. J. Petrol. 44, 2261–2286.
  202. Maas, R., Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S.,
  203. Sobolev, N.V., 2005. Sr, Nd, and Pb isotope evidence for a mantle
  204. origin of alkali chlorides and carbonates in the Udachnaya
  205. kimberlite, Siberia. Geology 33, 549–552.
  206. Mal'kov, B.A., Bobolovich, G.N., 1977. Genesis of kimberlite as
  207. shown by study of inclusions in calcite and apatite. Trans. (Dokl.)
  208. USSR Acad. Sci., Earth Sci. Sect. 234, 181–183.
  209. Marshintsev, V.K., 1986. Vertical Heterogeneity of Kimberlite Bodies
  210. in Yakutiya. Nauka, Novosibirsk. 239 pp.
  211. Marshintsev, V.K., Migalkin, K.N., Nikolaev, N.C., Barashkov, Y.P.,
  212. 1976. Unaltered kimberlite of the Udachnaya East pipe. Trans.
  213. (Dokl.) USSR Acad. Sci., Earth Sci. Sect. 231, 961–964.
  214. Maslovskaja, M.N., Yegorov, K.N., Kolosnitsyna, T.I., Brandt, S.B.,
  215. 1983. Strontium isotope composition, Rb–Sr absolute age, and
  216. rare alkalies in micas from Yakutian kimberlites. Trans. (Dokl.)
  217. USSR Acad. Sci., Earth Sci. Sect. 266, 451–455.
  218. McCrea, J.M., 1950. On the isotopic chemistry of carbonates and a
  219. paleotemperature scale. J. Chem. Phys. 18, 849–857.
  220. Milton, C., 1968. The “Natro-Carbonatite Lava” of Oldoinyo Lengai,
  221. Tanzania. Geol. Soc. Am., Spec. Pap. 121, 202.
  222. Misra, K.C., Anand, M., Taylor, L.A., Sobolev, N.V., 2004. Multistage
  223. metasomatism of diamondiferous eclogite xenoliths from the
  224. Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib. Mineral.
  225. Petrol. 146, 696–714.
  226. Mitchell, R.H., 1986. Kimberlites: Mineralogy, Geochemistry and
  227. Petrology. Plenum Press, New York. 442 pp.
  228. Mitchell, R.H., 1989. Aspects of the petrology of kimberlites and
  229. lamproites: some definitions and distinctions. In: Ross, J., et al.
  230. (Eds.), Kimberlites and Related Rocks: Their Composition,
  231. Occurrence, Origin and Emplacement. Blackwell Scientific Publications,
  232. Sydney, pp. 7–45.
  233. Nielsen, T.F.D., Veksler, I.V., 2002. Is natrocarbonatite a cognate fluid
  234. condensate? Contrib. Mineral. Petrol. 142, 425–435.
  235. Pal'yanov, Y.N., Sokol, A.G., Borzdov, Y.M., Khokhryakov, A.F.,
  236. 2002. Fluid-bearing alkaline carbonate melts as the medium for the
  237. formation of diamonds in the Earth's mantle: an experimental
  238. study. Lithos 60, 145–159.
  239. Panina, L.I., 2005. Multiphase carbonate–salt immiscibility in
  240. carbonatite melts: data on melt inclusions from the Krestovskiy
  241. massif minerals (Polar Siberia). Contrib. Mineral. Petrol. 150,
  242. 19–36.
  243. Parthasarathy, G., Chetty, T.R.K., Haggerty, S.E., 2002. Thermal
  244. stability and spectroscopic studies of zemkorite: a carbonate from
  245. the Venkatampalle kimberlite of southern India. Am. Mineral. 87,
  246. 1384–1389.
  247. Pasteris, J.D., 1984. Kimberlites: complex mantle melts. Annu. Rev.
  248. Earth Planet. Sci. 12, 133–153
  249.  
  250. Pavlov, D.I., Ilupin, I.P., 1973. Halite in Yakutian kimberlite, its
  251. relations to serpentine and the source of its parent solutions. Trans.
  252. (Dokl.) USSR Acad. Sci., Earth Sci. Sect. 213, 178–180.
  253. Price, S.E., Russell, J.K., Kopylova, M.G., 2000. Primitive magma
  254. from the Jericho Pipe, NWT, Canada: constraints on primary
  255. kimberlite melt chemistry. J. Petrol. 41, 789–808.
  256. Sandland, T.O., Du, L.-S., Stebbins, J.F., Webster, J.D., 2004. Structure
  257. of Cl-containing silicate and aluminosilicate glasses: a 35Cl MASNMR
  258. study. Geochim. Cosmochim. Acta 68, 5059–5069.
  259. Sharma, T., Clayton, R.N., 1965. Measurement of 18O/16O ratios of
  260. total oxygen in carbonates. Geochim. Cosmochim. Acta 29,
  261. 1347–1353.
  262. Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P., Sobolev, N.V., 2003.
  263. Djerfisherite in unaltered kimberlites of the Udachnaya-East pipe,
  264. Yakutia. Trans. (Dokl.) Russian Acad. Sci., Earth Sci. Sect. 390,
  265. 554–557.
  266. Sheppard, S.M.F., Dawson, J.B., 1975. Hydrogen, carbon and oxygen
  267. isotope studies of megacryst and matrix minerals from Lesothan
  268. and South African kimberlites. Phys. Chem. Earth 9, 747–763.
  269. Skinner, E.M.W., Clement, C.R., 1979. Mineralogical classification of
  270. Southern African kimberlites. In: Boyd, F.R., Meyer, H.O.A.
  271. (Eds.), Kimberlites, Diatremes and Diamonds: Their Geology,
  272. Petrology and Geochemistry. American Geophysical Union,
  273. Washington, D.C., pp. 129–139.
  274. Smith, C.B., 1983. Pb, Sr and Nd isotopic evidence for sources of
  275. southern African Cretaceous kimberlites. Nature 304, 51–54.
  276. Smith, C.B., Gurney, J.J., Skinner, E.M.W., Clement, C.R., Ebrahim,
  277. N., 1985. Geochemical character of the southern African
  278. kimberlites: a new approach based on isotopic constraints. Trans.
  279. Geol. Soc. S. Afr. 88, 267–280.
  280. Sobolev, A.V., Sobolev, N.V., Smith, C.B., Dubessy, J., 1989. Fluid and
  281. melt compositions in lamproites and kimberlites based on the study of
  282. inclusions in olivine. In: Ross, J., et al. (Ed.), Kimberlites and Related
  283. Rocks: Their Composition, Occurrence, Origin and Emplacement.
  284. Blackwell Scientific Publications, Sydney, pp. 220–241.
  285. Tomlinson, E., Jones, A., Milledge, J., 2004. High-pressure experimental
  286. growth of diamond using C–K2CO3–KCl as an analogue
  287. for Cl-bearing carbonate fluid. Lithos 77, 287–294.
  288. Ukhanov, A.V., Ryabchikov, I.D., Kharkiv, A.D., 1988. Lithospheric
  289. Mantle of the Yakutian Kimberlite Province. Nauka, Moscow. 250 pp.
  290. Vasilenko, V.B., Zinchuk, N.N., Krasavchikov, V.O., Kuznetsova, L.G.,
  291. Khlestov, V.V., Volkova, N.I., 2002. Diamond potential estimation
  292. based on kimberlite major element chemistry. J. Geochem. Explor.
  293. 76, 93–112.
  294. Veksler, I.V., 2004. Liquid immiscibility and its role at the magmatic–
  295. hydrothermal transition: a summary of experimental studies.
  296. Chem. Geol. 210, 7–31.
  297. Veksler, I.V., Nielsen, T.F.D., Sokolov, S.V., 1998. Mineralogy of
  298. crystallized melt inclusions from Gardiner and Kovdor ultramafic
  299. alkaline complexes: implications for carbonatite genesis. J. Petrol.
  300. 39, 2015–2031.
  301. Watkinson, D.H., Chao, G.Y., 1973. Shortite in kimberlite from the
  302. Upper Canada Gold Mine, Ontario. J. Geol. 81, 229–233.
  303. Webster, J.D., Kinzler, R.J., Mathez, E.A., 1999. Chloride and water
  304. solubility in basalt and andesite melts and implications for
  305. magmatic degassing. Geochim. Cosmochim. Acta 63, 729–738.
  306. Weis, D., Demaiffe, D., 1985. A depleted mantle source for kimberlites
  307. from Zaire: Nd, Sr and Pb isotopic evidence. Earth Planet. Sci.
  308. Lett. 73, 269–277.
  309. Zaitsev, A.N., Chakhmouradian, A.R., 2002. Calcite–amphibole–
  310. clinopyroxene rock from the Afrikanda Complex, Kola Peninsula,
  311. Russia: mineralogy and a possible link to carbonatites. II. Oxysalt
  312. minerals. Can. Mineral. 40, 103–120.
  313. Zedgenizov, D.A., Kagi, H., Shatsky, V.S., Sobolev, N.V., 2004.
  314. Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite
  315. pipe (Yakutia): evidence from vibrational spectroscopy. Mineral.
  316. Mag. 68, 61–73.
  317. Zinchuk, N.N., Spetsius, Z.V., Zuenko, V.V., Zuev, V.M., 1993.
  318. Udachnaya Kimberlite Pipe. University of Novosibirsk, Russia.
  319. 146 pp.
  320. Zolensky, M.E., Bodnar, R.J., Gibson, E.K., Nyquist, L.E., Reese, Y.,
  321. Shih, C.Y., Wiesmann, H., 1999. Asteroidal water within fluid
  322. inclusion-bearing halite in an H5 chondrite, Monahans (1998).
  323. Science 285, 1377–1379" name="eprints.referencetext" />
  324. <meta content="Kamenetsky, V.S. and Kamenetsky, M.B. and Sharygin, V.V. and Faure, K. and Golovin, A.V. (2007) Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia). Chemical Geology, 237 (3-4). pp. 384-400. ISSN 0009-2541" name="eprints.citation" />
  325. <meta content="http://eprints.utas.edu.au/2451/1/CG-07-Udachnaya.pdf" name="eprints.document_url" />
  326. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  327. <meta content="Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia)" name="DC.title" />
  328. <meta content="Kamenetsky, V.S." name="DC.creator" />
  329. <meta content="Kamenetsky, M.B." name="DC.creator" />
  330. <meta content="Sharygin, V.V." name="DC.creator" />
  331. <meta content="Faure, K." name="DC.creator" />
  332. <meta content="Golovin, A.V." name="DC.creator" />
  333. <meta content="260300 Geochemistry" name="DC.subject" />
  334. <meta content="260100 Geology" name="DC.subject" />
  335. <meta content="The compositions of parental magmas forming kimberlitic rocks remain largely unknown because of masking effects of syneruptive contamination and degassing, and post-magmatic alteration. Among most affected elements are volatiles (H2O and CO2) and alkalies (Na and K). This study attempts to overcome the problems related to the alteration of kimberlites by detailed petrographic and chemical analyses of exceptionally fresh, and thus essentially anhydrous (< 0.5 wt.% H2O), kimberlite samples from the Udachnaya-East pipe (Daldyn-Alakit region, Siberia). The groundmass of these kimberlites contains abundant carbonate (calcite, shortite, zemkorite) and chloride (halite, sylvite) minerals, cementing olivine phenocrysts, and forming round segregations (&quot;nodules&quot;). The nodules, belonging to the chloride and chloride-carbonate types, show no evidence of thermometamorphic effects on the contacts with the host kimberlite. The chloride-carbonate nodules demonstrate liquid immiscibility textures that are remarkably similar to those observed in the olivine-hosted chloride-carbonate melt inclusions at similar to 600 degrees C. The similarity of oxygen and carbon isotope values of carbonates from the groundmass and nodules (delta O-18 12.5 to 13.9 parts per thousand VSMOW; delta C-13 -3.7 to -2.7 parts per thousand VPDB) points to their common origin at similar temperatures. We argue for crystallisation of the chloride-carbonate nodules from residual kimberlite melts, pooled after exhaustion of the silicate melt component. The enrichment of the residual melt in alkali carbonate and chloride is partly reflected in the bulk groundmass compositions (10-11 wt.% CO2, 2.3-3.2 wt.% Cl, 2.6-3.7 wt.% Na, and 1.6-2.0 wt.% K). We propose that this enrichment is inherited from the kimberlite parental magma, and it can be responsible for the kimberlite low liquidus temperatures, low viscosities, and rapid emplacement. " name="DC.description" />
  336. <meta content="2007-05-05" name="DC.date" />
  337. <meta content="Article" name="DC.type" />
  338. <meta content="PeerReviewed" name="DC.type" />
  339. <meta content="application/pdf" name="DC.format" />
  340. <meta content="http://eprints.utas.edu.au/2451/1/CG-07-Udachnaya.pdf" name="DC.identifier" />
  341. <meta content="http://dx.doi.org/10.1016/j.chemgeo.2006.07.010" name="DC.relation" />
  342. <meta content="Kamenetsky, V.S. and Kamenetsky, M.B. and Sharygin, V.V. and Faure, K. and Golovin, A.V. (2007) Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia). Chemical Geology, 237 (3-4). pp. 384-400. ISSN 0009-2541" name="DC.identifier" />
  343. <meta content="http://eprints.utas.edu.au/2451/" name="DC.relation" />
  344. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/BibTeX/epprod-eprint-2451.bib" title="BibTeX" type="text/plain" />
  345. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/ContextObject/epprod-eprint-2451.xml" title="OpenURL ContextObject" type="text/xml" />
  346. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/ContextObject::Dissertation/epprod-eprint-2451.xml" title="OpenURL Dissertation" type="text/xml" />
  347. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/ContextObject::Journal/epprod-eprint-2451.xml" title="OpenURL Journal" type="text/xml" />
  348. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/DC/epprod-eprint-2451.txt" title="Dublin Core" type="text/plain" />
  349. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/DIDL/epprod-eprint-2451.xml" title="DIDL" type="text/xml" />
  350. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/EndNote/epprod-eprint-2451.enw" title="EndNote" type="text/plain" />
  351. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/HTML/epprod-eprint-2451.html" title="HTML Citation" type="text/html; charset=utf-8" />
  352. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/METS/epprod-eprint-2451.xml" title="METS" type="text/xml" />
  353. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/MODS/epprod-eprint-2451.xml" title="MODS" type="text/xml" />
  354. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/RIS/epprod-eprint-2451.ris" title="Reference Manager" type="text/plain" />
  355. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/Refer/epprod-eprint-2451.refer" title="Refer" type="text/plain" />
  356. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/Simple/epprod-eprint-2451text" title="Simple Metadata" type="text/plain" />
  357. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/Text/epprod-eprint-2451.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  358. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2451/XML/epprod-eprint-2451.xml" title="EP3 XML" type="text/xml" />
  359.  
  360. </head>
  361. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  362. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  363.  
  364.  
  365.  
  366.  
  367. <table width="795" border="0" cellspacing="0" cellpadding="0">
  368. <tr>
  369. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  370. <table border="0" cellpadding="0" cellspacing="0" width="795">
  371. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  372. <tr>
  373. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  374. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  375. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  376. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  377. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  378. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  379. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  380. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  381. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  382. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  383. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  384. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  385. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  386. </tr>
  387. <tr>
  388. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  389. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  390. </tr>
  391. <tr>
  392. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  393. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  394. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  395. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  396. </tr>
  397. <tr>
  398. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  399. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  400. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  401. </tr>
  402. <tr>
  403. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  404. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  405. </tr>
  406. <tr>
  407. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  408. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  409. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  410. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  411. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  412. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  413. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  414. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  415. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  416. </tr>
  417. <tr>
  418. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  419. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  420. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  421. </tr>
  422. <tr>
  423. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  424. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  425. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  426. </tr>
  427. </table></td>
  428. </tr>
  429. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  430. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  431. <td align="right" style="white-space: nowrap">
  432. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  433. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  434. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  435. <input type="hidden" name="_order" value="bytitle" />
  436. <input type="hidden" name="basic_srchtype" value="ALL" />
  437. <input type="hidden" name="_satisfyall" value="ALL" />
  438. </form>
  439. </td>
  440. </tr></table></td></tr>
  441. <tr>
  442. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  443.  
  444.  
  445. <div align="center">
  446. <table width="720" class="ep_tm_main"><tr><td align="left">
  447. <h1 class="ep_tm_pagetitle">Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia)</h1>
  448. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Kamenetsky, V.S.</span> and <span class="person_name">Kamenetsky, M.B.</span> and <span class="person_name">Sharygin, V.V.</span> and <span class="person_name">Faure, K.</span> and <span class="person_name">Golovin, A.V.</span> (2007) <xhtml:em>Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia).</xhtml:em> Chemical Geology, 237 (3-4). pp. 384-400. ISSN 0009-2541</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2451/1/CG-07-Udachnaya.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2451/1/CG-07-Udachnaya.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />4Mb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="3205" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1016/j.chemgeo.2006.07.010">http://dx.doi.org/10.1016/j.chemgeo.2006.07.010</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">The compositions of parental magmas forming kimberlitic rocks remain largely unknown because of masking effects of syneruptive contamination and degassing, and post-magmatic alteration. Among most affected elements are volatiles (H2O and CO2) and alkalies (Na and K). This study attempts to overcome the problems related to the alteration of kimberlites by detailed petrographic and chemical analyses of exceptionally fresh, and thus essentially anhydrous (&lt; 0.5 wt.% H2O), kimberlite samples from the Udachnaya-East pipe (Daldyn-Alakit region, Siberia). The groundmass of these kimberlites contains abundant carbonate (calcite, shortite, zemkorite) and chloride (halite, sylvite) minerals, cementing olivine phenocrysts, and forming round segregations ("nodules"). The nodules, belonging to the chloride and chloride-carbonate types, show no evidence of thermometamorphic effects on the contacts with the host kimberlite. The chloride-carbonate nodules demonstrate liquid immiscibility textures that are remarkably similar to those observed in the olivine-hosted chloride-carbonate melt inclusions at similar to 600 degrees C. The similarity of oxygen and carbon isotope values of carbonates from the groundmass and nodules (delta O-18 12.5 to 13.9 parts per thousand VSMOW; delta C-13 -3.7 to -2.7 parts per thousand VPDB) points to their common origin at similar temperatures. We argue for crystallisation of the chloride-carbonate nodules from residual kimberlite melts, pooled after exhaustion of the silicate melt component. The enrichment of the residual melt in alkali carbonate and chloride is partly reflected in the bulk groundmass compositions (10-11 wt.% CO2, 2.3-3.2 wt.% Cl, 2.6-3.7 wt.% Na, and 1.6-2.0 wt.% K). We propose that this enrichment is inherited from the kimberlite parental magma, and it can be responsible for the kimberlite low liquidus temperatures, low viscosities, and rapid emplacement. </p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">The definitive version is available at http://www.sciencedirect.com&#13;
  449. </td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">kimberlite, immiscibility, chloride, carbonate, melt inclusions, carbon and oxygen isotopes, oldoinyo-lengai, Yakutian kimberlites, melt inclusions, unaltered kimberlites, isotopic evidence, alkali chlorides, mantle fluid</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260300.html">260000 Earth Sciences &gt; 260300 Geochemistry</a><br /><a href="http://eprints.utas.edu.au/view/subjects/260100.html">260000 Earth Sciences &gt; 260100 Geology</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2451</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Prof Vadim Kamenetsky</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">14 Nov 2007 13:58</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2451;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2451">item control page</a></p>
  450. </td></tr></table>
  451. </div>
  452.  
  453.  
  454.  
  455. <!-- InstanceEndEditable --></td>
  456. </tr>
  457. <tr>
  458. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  459. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  460. <tr valign="top">
  461. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  462. </tr>
  463. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  464. <tr valign="top">
  465. <td width="68%" class="footer">Authorised by the University Librarian<br />
  466. © University of Tasmania ABN 30 764 374 782<br />
  467. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  468. <td width="32%"><div align="right">
  469. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  470. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  471. </a></p>
  472. </div></td>
  473. </tr>
  474. <tr valign="top">
  475. <td><p>  </p></td>
  476. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  477. </tr>
  478. </table>
  479. <!-- #EndLibraryItem -->
  480. <div align="center"></div></td>
  481. </tr>
  482. </table>
  483.  
  484. </body>
  485. </html>