Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 638.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
  <head>
    <title>UTas ePrints - Application of Higher-Order Neural Networks to Financial Time-Series Prediction</title>
    <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
    <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
    <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
    <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
    <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
    <link rel="Top" href="http://eprints.utas.edu.au/" />
    <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
    <meta content="Fulcher, John" name="eprints.creators_name" />
<meta content="Zhang, Ming" name="eprints.creators_name" />
<meta content="Xu, Shuxiang" name="eprints.creators_name" />
<meta content="John@uow.edu.au" name="eprints.creators_id" />
<meta content="" name="eprints.creators_id" />
<meta content="Shuxiang.Xu@utas.edu.au" name="eprints.creators_id" />
<meta content="Kamruzzaman, Joarder" name="eprints.editors_name" />
<meta content="Begg, Rezaul" name="eprints.editors_name" />
<meta content="Sarker, Ruhul" name="eprints.editors_name" />
<meta content="book_section" name="eprints.type" />
<meta content="2007-02-01" name="eprints.datestamp" />
<meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
<meta content="show" name="eprints.metadata_visibility" />
<meta content="Application of Higher-Order Neural Networks to Financial Time-Series Prediction" name="eprints.title" />
<meta content="pub" name="eprints.ispublished" />
<meta content="280212" name="eprints.subjects" />
<meta content="public" name="eprints.full_text_status" />
<meta content="artificial neural networks, financial time series, higher-order artificial neural networks, artificial neural network group" name="eprints.keywords" />
<meta content="Financial time series data is characterized by non-linearities, discontinuities and high frequency, multi-polynomial components. Not surprisingly, conventional Artificial Neural Networks (ANNs) have difficulty in modelling such complex data. A more appropriate approach is to apply Higher-Order ANNs, which are capable of extracting higher order polynomial coefficients in the data. Moreover, since there is a one-to-one correspondence between network weights and polynomial coefficients, HONNs (unlike ANNs generally) can be considered open-, rather than 'closed box' solutions, and thus hold more appeal to the financial community. After developing Polynomial and Trigonometric HONNs, we introduce the concept of HONN groups. The latter incorporate piecewise continuous activation functions and thresholds, and as a result  are capable of modelling discontinuous (piecewise continuous) data, and what's more to any degree of accuracy. Several other PHONN variants are also described. The performance of P(T)HONNs and HONN groups on representative financial time series is described (credit ratings and exchange rates). In short, HONNs offer roughly twice the performance of MLP/BP on financial time series prediction, and HONN groups around 10% further improvement." name="eprints.abstract" />
<meta content="2006" name="eprints.date" />
<meta content="submitted" name="eprints.date_type" />
<meta content="Idea Group Publishing" name="eprints.publisher" />
<meta content="Hershey, PA" name="eprints.place_of_pub" />
<meta content="287" name="eprints.pages" />
<meta content="UNSPECIFIED" name="eprints.thesis_type" />
<meta content="TRUE" name="eprints.refereed" />
<meta content="1591406714" name="eprints.isbn" />
<meta content="Artificial Neural Networks in Finance and Manufacturing" name="eprints.book_title" />
<meta content="Allen, D.W., &amp; Taylor, J.G. (1994). Learning Time Series by Neural Networks. Proceedings of the International Conference on Neural Networks, Sorrento, Italy, Marinaro, M. &amp; Morasso, P. (Eds.), Berlin: Springer, 529-532.
Allen, F., &amp; Karjalainen, R. (1999). Using Genetic Algorithms to Find Technical Trading Rules. J. Financial Economics, 51(2), 245-271.
Azema- Barac, M.E., &amp; Refenes, A.N. (1997). Neural Networks for Financial Applications. In Fiesler, E., &amp; Beale, R. (Eds.). Handbook of Neural Computation. Oxford, UK: Oxford University Press, G6.3:1-7.
Azoff, E. (1994). Neural Network Time Series Forecasting of Financial Markets. New York, NY: Wiley.
Back, A. (2004). Independent Component Analysis. In Fulcher, J., &amp; Jain, L.C. (Eds.) Applied Intelligent Systems: New Directions. Berlin: Springer, 59-95.
Barron, R., Gilstrap, L., &amp; Shrier, S. (1987). Polynomial and Neural Networks: Analogies and Engineering Applications. Proceedings of the International Conference on Neural Networks, New York, NY, II, 431-439.
Box, G.E.P., &amp; Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control (Revised Ed.). San Francisco, CA: Holden Day.
Brockwell, P.J., &amp; Davis, R.A. (1991). Time Series: Theory and Methods (2nd Ed.). New York: Springer.
Chakraborty, K., Mehrotra, K., Mohan, C., &amp; Ranka, S. (1992). Forecasting the Behaviour of Multivariate Time Series Using Neural Networks. Neural Networks, 5, 961-970.
Chang, P.T. (1997). Fuzzy Seasonality Forecasting. Fuzzy Sets and Systems, 112, 381-394.
Chatfield, C. (1996). The Analysis of Time Series: an Introduction. London: Chapman &amp; Hall.
Chen, L. (1981). Topological Structure in Visual Perception. Science, 218, 699.
Chen, S.-H. (Ed.) (2002). Genetic Algorithms and Genetic Programming in Computational Finance. Boston, MA: Kluwer.
Edelman, D., &amp; Davy, P. (2004). Adaptive Technical Analysis in the Financial Markets Using Machine Learning: a Statistical View. In Fulcher, J., &amp; Jain, L.C. (Eds.) Applied Intelligent Systems: New Directions. Berlin: Springer, 1-16.
Giles, L., &amp; Maxwell, T. (1987). Learning, Invariance and Generalisation in High-Order Neural Networks. Applied Optics, 26(23), 4972-4978.
Giles, L., Griffin, R., &amp; Maxwell, T. (1988). Encoding Geometric Invariances in High-Order Neural Networks. Proceedings Neural Information Processing Systems, 301-309.
Goggin, S., Johnson, K., &amp; Gustafson, K. (1993). A Second-Order Translation, Rotation and Scale Invariant Neural Network. ????????????
Gorr, W.L. (1994). Research Perspective on Neural Network Forecasting.  International Journal of Forecasting, 10(1), 1-4. 
Harris, R., &amp; Sollis, R. (2003). Applied Time Series Modelling and Forecasting. Chichester, UK: Wiley.
Harvey, A.C. (1989). Forecasting, Structural Times Series Models and the Kalman Filter. Cambridge University Press.
Hecht-Nielsen, R. (1987). Kolmogorov’s Mapping Neural Network Existence Theorem’. Proceedings of the International Conference on Neural Networks, III, New York: IEEE Press, 11-13.
Hornik, K., Stinchcombe, M., &amp; White, H. (1989). Multi-Layer Feedforward Networks are Universal Approximators. Neural Networks, 2, 359-366.
Hornik, K. (1991). Approximation Capabilities of Multilayer Feedforward Networks. Neural Networks, 4, 251-257.
Hu, S., &amp; Yan, P. (1992). Level-by-Level Learning for Artificial Neural Groups. Electronica Sinica, 20, 10, 39-43.
Iba, H., &amp; Sasaki, T. (1999). Using Genetic Programming to Predict Financial Data. Proceedings of the 1999 Congress on Evolutionary Computation – CEC99, New Jersey, IEEE Press, 1, 244-251.
Inui, T., Tanabe, Y., &amp; Onodera, Y. (1978). Group Theory and its Application in Physics. Berlin: Springer.
Karayiannis, N., &amp; Venetsanopoulos, A. (1993). Artificial Neural Networks: Learning Algorithms, Performance Evaluation and Applications. Boston, MA: Kluwer.
Kingdon, J. (1997). Intelligent Systems and Financial Forecasting. Berlin: Springer.
Lapedes, A.S., &amp; Farber, R. (1987). Non-linear Signal Processing Using Neural Networks: Prediction and System Modelling. Los Alamos National Laboratory Technical Report LA-UR-87.
Leshno, M., Lin, V., Pinkus, A., &amp; Schoken, S. (1993). Multi-Layer Feedforward Networks with a Non-Polynomial Activation Can Approximate Any Function. Neural Networks, 6, 861-867.
Lisboa, P., &amp; Perantonis, S. (1991). Invariant Pattern Recognition Using Third-Order Networks and Zernlike Moments. Proceedings of the IEEE International Joint Conference on Neural Networks, Singapore, 18-21 November, II, 1421-1425.
Lu, B., &amp; Zhang, M. (2000). Using PT-HONN Models for Multi-Polynomial Function Simulation. Proceedings of IASTED International Conference on Neural Networks, Pittsburgh, PA, 15-17 May.
Makridakis, S. et.al. (1982). The Accuracy of Extrapolation Methods: Results of a Forecasting Competition. Journal of Forecasting, 1, 111-153.
Mills, T.C. (1993). The Econometric Modelling of Financial Time Series. Cambridge University Press.
Naimark, M., &amp; Stern, A. (1982). Theory of Group Representation. Berlin: Springer.
Psaltis, D., Park, C., &amp; Hong, J. (1988). Higher Order Associative Memories and their Optical Implementations. Neural Networks, 1, 149-163.
Redding, N., Kowalczyk, A., &amp; Downs, T. (1993). Constructive Higher-Order Network Algorithm that is Polynomial Time. Neural Networks, 6, 997-1010.
Refenes, A.N. (Ed.). (1994). Neural Networks in the Capital Markets. Chichester, UK: Wiley.
Reinsel, G.C. (1997). Elements of Multivariate Time Series Analysis. New York: Springer.
Rumelhart, D., Hinton, G., &amp; McClelland, J. (1986). Learning Internal Representations by Error Propagation. In Rumelhart, D., &amp; McClelland, J. (Eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1 – Foundations. Cambridge, MA: MIT Press.
Schoneburg, E. (1990). Stock Market Prediction Using Neural Networks: a Project Report. Neurocomputing, 2, 17-27.
Shin, Y., &amp; Ghosh, ?. (1991). The Pi-Sigma Network: an Efficient Higher-Order Neural Network for Pattern Classification and Function Approximation. Proceedings of the International Joint Conference on Neural Networks, Seattle, WA, July, I, 13-18.
Sisman-Yilmaz, N.A., Alpaslan, F.N., &amp; Jain, L.C. (2004). Fuzzy Mulivariate Auto-Regression Method and its Application. In Fulcher, J., &amp; Jain, L.C. (Eds.) Applied Intelligent Systems: New Directions. Berlin: Springer, 281-300.
Tay, E.H., &amp; Cao, L.J. (2001). Application of Support Vector Machines in Financial Time Series Forecasting. Omega, 29, 309-317.
Trippi, R.R., &amp; Turban, E. (Eds.) (1993). Neural Networks in Finance and Investing. Chichago, IL: Probus.
Tseng, F.M., Tzeng, G.H., Yu, H.C., &amp; Yuan, B.J.C. (2001). Fuzzy ARIMA Model for Forecasting the Foreign Exchange Market. Fuzzy Sets and Systems, 118, 9-19.
Vemuri, V., &amp; Rogers, R. (1994). Artificial Neural Networks: Forecasting Time Series. Piscataway, NJ: IEEE Computer Society Press.
?Watada, J. (1992). Fuzzy Time Series Analysis and Forecasting of Sales Volume. In Kacprzyk, J. &amp; Fedrizzi, M. (Eds.). Studies in Fuzziness Vol.1: Fuzzy Regression Analysis. Publisher????.
Weigend, A.S., &amp; Gershenfeld, N.A. (Eds.). (1993). Time Series Prediction: Forecasting the Future and Understanding the Past. Reading, MA: Addison Wesley.
Welstead, S.T. (1994). Neural Networks and Fuzzy Logic Applications in C/C++. New York: Wiley. Chapter 7 – Predicting Interest Rates.
Wilcox, C. (1991). Understanding Hierarchical Neural Network Behaviour: a Renormalization Group Approach. J. Physics A, 24, 2644-2655.
Zeeman, E. (1962). The Topology of the Brain and Visual Perception. In Fork, M. Jr. (Ed.) Topology of 3-Manifolds and Related Topics. Englewood Cliffs, NJ: Prentice Hall.
Zhang, G., Patuwo, B.E.,  &amp; Hu, M.Y. (1998). Forecasting with Artificial Neural Networks: the State of the Art. Int. J. Forecasting, 14, 35-62.
Zhang, M. (2003). Financial Data Simulation Using PL-HONN Model. Proceedings ??????????????????
Zhang, M., Crane, J., and Bailey, J. (2003). Rainfall Estimation Using SPHONN Model. Proceedings of the International Conference on Artificial Intelligence, Las Vegas, NV, 21-24 June, 695-701.
Zhang, M., &amp; Fulcher, J. (1996). Face Recognition Using Artificial Neural Network Group-based Adaptive Tolerance (GAT) Trees. IEEE Transactions on Neural Networks, 7(3), 555-567.
Zhang, M., &amp; Fulcher, J. (2004). Higher Order Neural Networks for Satellite Weather Prediction. In Fulcher, J., &amp; Jain, L.C. (Eds.) Applied Intelligent Systems: New Directions. Berlin: Springer, 17-57.
Zhang, M., Fulcher, J., &amp; Scofield, R. (1997). Rainfall Estimation Using Artificial Neural Network Group. Neurocomputing, 16(2), 97-115.
Zhang, M., &amp; Lu, B. (2001). Financial Data Simulation Using M-PHONN Model. Proceedings of the International Joint Conference on Neural Networks, Washington, DC, July, 1828-1832.
Zhang, M., Murugesan, S., &amp; Sadeghi, M. (1995). Polynomial Higher Order Neural Network for Economic Data Simulation. Proceedings of the International Conference on Neural Information Processing, Beijing, China, 30 October – 3 November, 493-496.
Zhang, M., Zhang, J.C., &amp; Fulcher, J. (1996). Financial Simulation System Using Higher Order Trigonometric Polynomial Neural Network Group Model. Proceedings of the IEEE/IAFE Conference on Computational Intelligence for Financial Engineering, New York, NY, 23-25 March, 189-194.
Zhang, M., Zhang, J.C., &amp; Fulcher, J. (1997). Financial Prediction System Using Higher Order Trigonometric Polynomial Neural Network Group Model. Proceedings of the IEEE International Conference on Neural Networks, Houston, TX, 8-12 June, 2231-2234.
Zhang, M., Zhang, J.C., &amp; Fulcher, J. (2000). Higher-Order Neural Network Group Models for Data Approximation. International Journal of Neural Systems, 10(2), 123-142.
Zhang, M., Zhang, J.C., &amp; Keen, S. (1999). Using THONN System for Higher Frequency Non-Linear Data Simulation and Prediction. Proceedings of IASTED International Conference on Artificial Intelligence &amp; Soft Computing, Honolulu, Hawaii, 9-12 August, 320-323. 
Zhang, M., Xu, S., &amp; Fulcher, J. (2002). Neuron-Adaptive Higher-Order Neural Network Models for Automated Financial Data Modelling. IEEE Transactions on Neural Networks, 13(1), 188-204.
Zhang, M. (2003). Financial Data Simulation Using PL-HONN Model. Proceedings of ?????
World Wide Web Resources (financial time series databases)
www.ics.uci.edu/~mlearn/MLrepository.html (Machine Learning Databases)
www.abs.gov.au/ausstats/abs@.nsf/w2.3 (Australian Bureau of Statistics 19. free sample data)
www.nla.gov.au/oz/stats.html (National Library of Australia e.g. financial indicators)
Author Notes
Requests for reprints should be sent to Professor John Fulcher, School of IT &amp; Computer Science, University of Wollongong NSW 2522, Australia (john@uow.edu.au).
We would like to acknowledge the financial assistance of the following organizations in our development of Higher-Order Neural Networks: Societe International de Telecommunications Aeronautique, Fujitsu Research Laboratories, Japan, the US National Research Council and the Australian Research Council.
" name="eprints.referencetext" />
<meta content="Fulcher, John and Zhang, Ming and Xu, Shuxiang (2006) Application of Higher-Order Neural Networks to Financial Time-Series Prediction. In: Artificial Neural Networks in Finance and Manufacturing. . Idea Group Publishing, Hershey, PA. ISBN 1591406714" name="eprints.citation" />
<meta content="http://eprints.utas.edu.au/638/1/kamruzzaman_Xu_chapter.pdf" name="eprints.document_url" />
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
<meta content="Application of Higher-Order Neural Networks to Financial Time-Series Prediction" name="DC.title" />
<meta content="Fulcher, John" name="DC.creator" />
<meta content="Zhang, Ming" name="DC.creator" />
<meta content="Xu, Shuxiang" name="DC.creator" />
<meta content="280212 Neural Networks, Genetic Alogrithms and Fuzzy Logic" name="DC.subject" />
<meta content="Financial time series data is characterized by non-linearities, discontinuities and high frequency, multi-polynomial components. Not surprisingly, conventional Artificial Neural Networks (ANNs) have difficulty in modelling such complex data. A more appropriate approach is to apply Higher-Order ANNs, which are capable of extracting higher order polynomial coefficients in the data. Moreover, since there is a one-to-one correspondence between network weights and polynomial coefficients, HONNs (unlike ANNs generally) can be considered open-, rather than 'closed box' solutions, and thus hold more appeal to the financial community. After developing Polynomial and Trigonometric HONNs, we introduce the concept of HONN groups. The latter incorporate piecewise continuous activation functions and thresholds, and as a result  are capable of modelling discontinuous (piecewise continuous) data, and what's more to any degree of accuracy. Several other PHONN variants are also described. The performance of P(T)HONNs and HONN groups on representative financial time series is described (credit ratings and exchange rates). In short, HONNs offer roughly twice the performance of MLP/BP on financial time series prediction, and HONN groups around 10% further improvement." name="DC.description" />
<meta content="Idea Group Publishing" name="DC.publisher" />
<meta content="Kamruzzaman, Joarder" name="DC.contributor" />
<meta content="Begg, Rezaul" name="DC.contributor" />
<meta content="Sarker, Ruhul" name="DC.contributor" />
<meta content="2006" name="DC.date" />
<meta content="Book Chapter" name="DC.type" />
<meta content="PeerReviewed" name="DC.type" />
<meta content="application/pdf" name="DC.format" />
<meta content="http://eprints.utas.edu.au/638/1/kamruzzaman_Xu_chapter.pdf" name="DC.identifier" />
<meta content="Fulcher, John and Zhang, Ming and Xu, Shuxiang (2006) Application of Higher-Order Neural Networks to Financial Time-Series Prediction. In: Artificial Neural Networks in Finance and Manufacturing. . Idea Group Publishing, Hershey, PA. ISBN 1591406714" name="DC.identifier" />
<meta content="http://eprints.utas.edu.au/638/" name="DC.relation" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/BibTeX/epprod-eprint-638.bib" title="BibTeX" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/ContextObject/epprod-eprint-638.xml" title="OpenURL ContextObject" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/ContextObject::Dissertation/epprod-eprint-638.xml" title="OpenURL Dissertation" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/ContextObject::Journal/epprod-eprint-638.xml" title="OpenURL Journal" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/DC/epprod-eprint-638.txt" title="Dublin Core" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/DIDL/epprod-eprint-638.xml" title="DIDL" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/EndNote/epprod-eprint-638.enw" title="EndNote" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/HTML/epprod-eprint-638.html" title="HTML Citation" type="text/html; charset=utf-8" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/METS/epprod-eprint-638.xml" title="METS" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/MODS/epprod-eprint-638.xml" title="MODS" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/RIS/epprod-eprint-638.ris" title="Reference Manager" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/Refer/epprod-eprint-638.refer" title="Refer" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/Simple/epprod-eprint-638text" title="Simple Metadata" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/Text/epprod-eprint-638.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/638/XML/epprod-eprint-638.xml" title="EP3 XML" type="text/xml" />

  </head>
  <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
    
    <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>




<table width="795" border="0" cellspacing="0" cellpadding="0">
  <tr>
    <td><script language="JavaScript1.2">mmLoadMenus();</script>
      <table border="0" cellpadding="0" cellspacing="0" width="795">
        <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
        <tr>
          <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
        </tr>
        <tr>
          <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
          <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
          <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
          <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
          <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
          <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
          <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
          <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
          <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
          <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
          <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
        </tr>
        <tr>
          <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
          <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
        </tr>
        <tr>
          <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
          <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
        </tr>
      </table></td>
  </tr>
    <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
      <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
      <td align="right" style="white-space: nowrap">
        <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
          <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
          <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
          <input type="hidden" name="_order" value="bytitle" />
          <input type="hidden" name="basic_srchtype" value="ALL" />
          <input type="hidden" name="_satisfyall" value="ALL" />
        </form>
      </td>
    </tr></table></td></tr>
  <tr>
    <td class="toplinks"><!-- InstanceBeginEditable name="content" -->


<div align="center">
  
  <table width="720" class="ep_tm_main"><tr><td align="left">
    <h1 class="ep_tm_pagetitle">Application of Higher-Order Neural Networks to Financial Time-Series Prediction</h1>
    <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Fulcher, John</span> and <span class="person_name">Zhang, Ming</span> and <span class="person_name">Xu, Shuxiang</span> (2006) <xhtml:em>Application of Higher-Order Neural Networks to Financial Time-Series Prediction.</xhtml:em> In: Artificial Neural Networks in Finance and Manufacturing. . Idea Group Publishing, Hershey, PA. ISBN 1591406714</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_650' );" href="http://eprints.utas.edu.au/638/1/kamruzzaman_Xu_chapter.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_650' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_650"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/638/thumbnails/1/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/638/1/kamruzzaman_Xu_chapter.pdf"><span class="ep_document_citation">PDF</span></a> - Requires a PDF viewer<br />1757Kb</td></tr></table><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">Financial time series data is characterized by non-linearities, discontinuities and high frequency, multi-polynomial components. Not surprisingly, conventional Artificial Neural Networks (ANNs) have difficulty in modelling such complex data. A more appropriate approach is to apply Higher-Order ANNs, which are capable of extracting higher order polynomial coefficients in the data. Moreover, since there is a one-to-one correspondence between network weights and polynomial coefficients, HONNs (unlike ANNs generally) can be considered open-, rather than 'closed box' solutions, and thus hold more appeal to the financial community. After developing Polynomial and Trigonometric HONNs, we introduce the concept of HONN groups. The latter incorporate piecewise continuous activation functions and thresholds, and as a result  are capable of modelling discontinuous (piecewise continuous) data, and what's more to any degree of accuracy. Several other PHONN variants are also described. The performance of P(T)HONNs and HONN groups on representative financial time series is described (credit ratings and exchange rates). In short, HONNs offer roughly twice the performance of MLP/BP on financial time series prediction, and HONN groups around 10% further improvement.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Book Chapter</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">artificial neural networks, financial time series, higher-order artificial neural networks, artificial neural network group</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/280212.html">280000 Information, Computing and Communication Sciences &gt; 280200 Artificial Intelligence and Signal and Image Processing &gt; 280212 Neural Networks, Genetic Alogrithms and Fuzzy Logic</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">638</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">DR SHUXIANG XU</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">01 Feb 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=638;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=638">item control page</a></p>
  </td></tr></table>
</div>



    <!-- InstanceEndEditable --></td>
  </tr>
  <tr>
    <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
    <table width="795" border="0" align="left" cellpadding="0" class="footer">
  <tr valign="top">
<td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
</tr>
<tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
      <tr valign="top">
        <td width="68%" class="footer">Authorised by the University Librarian<br />
© University of Tasmania ABN 30 764 374 782<br />
      <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
        <td width="32%"><div align="right">
            <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
            <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
            </a></p>
        </div></td>
      </tr>
      <tr valign="top">
        <td><p>  </p></td>
        <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
      </tr>
    </table>
    <!-- #EndLibraryItem -->
    <div align="center"></div></td>
  </tr>
</table>

  </body>
</html>