- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
- <html>
- <head>
- <title>UTas ePrints - Dual Symmetric Inverse Monoids and Representation Theory</title>
- <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
- <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
- <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
- <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
- <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
- <link rel="Top" href="http://eprints.utas.edu.au/" />
- <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
- <meta content="FitzGerald, D.G." name="eprints.creators_name" />
- <meta content="Leech, Jonathan" name="eprints.creators_name" />
- <meta content="D.FitzGerald@utas.edu.au" name="eprints.creators_id" />
- <meta content="leech@westmont.edu" name="eprints.creators_id" />
- <meta content="article" name="eprints.type" />
- <meta content="2007-09-17" name="eprints.datestamp" />
- <meta content="2008-02-07T01:22:06Z" name="eprints.lastmod" />
- <meta content="show" name="eprints.metadata_visibility" />
- <meta content="Dual Symmetric Inverse Monoids and Representation Theory" name="eprints.title" />
- <meta content="pub" name="eprints.ispublished" />
- <meta content="230105" name="eprints.subjects" />
- <meta content="restricted" name="eprints.full_text_status" />
- <meta content="dual symmetric inverse monoid, representations of inverse semigroups" name="eprints.keywords" />
- <meta content="There is a substantial theory (modelled on permutation representations of groups) of representations of an
- inverse semigroup S in a symmetric inverse monoid I_X , that is, a monoid of partial one-to-one self-maps
- of a set X. The present paper describes the structure of a categorical dual I*_X to the symmetric inverse
- monoid and discusses representations of an inverse semigroup in this dual symmetric inverse monoid. It
- is shown how a representation of S by (full) selfmaps of a set X leads to dual pairs of representations
- in I_X and I*_X, and how a number of known representations arise as one or the other of these pairs.
- Conditions on S are described which ensure that representations of S preserve such infima or suprema as
- exist in the natural order of S. The categorical treatment allows the construction, from standard functors,
- of representations of S in certain other inverse algebras (that is, inverse monoids in which all finite infima
- exist). The paper concludes by distinguishing two subclasses of inverse algebras on the basis of their
- embedding properties." name="eprints.abstract" />
- <meta content="1998" name="eprints.date" />
- <meta content="published" name="eprints.date_type" />
- <meta content="Journal of the Australian Mathematical Society, Series A" name="eprints.publication" />
- <meta content="64" name="eprints.volume" />
- <meta content="3" name="eprints.number" />
- <meta content="345-367" name="eprints.pagerange" />
- <meta content="UNSPECIFIED" name="eprints.thesis_type" />
- <meta content="TRUE" name="eprints.refereed" />
- <meta content="0263-6115" name="eprints.issn" />
- <meta content="http://www.austms.org.au/Publ/Jamsa/V64P3/pdf/e07.pdf" name="eprints.official_url" />
- <meta content="[1] D. A. Bredikhin, Representations of inverse semigroups by difunctional multipermutations, in:
- Transformation Semigroups: Proceedings of the International Conference held at the University of
- Essex, Colchester, England, August 3rd-6th, 1993 (ed. P. M. Higgins) (Department of Mathematics,
- University of Essex, 1994) pp. 1-10.
- [2] B. Fichtner, Ueber die zu Gruppen gehoerigen induktiven Gruppoide, I, Math. Nachr. 44 (1970),
- 313-339.
- [3] B. Fichtner-Schultz,
- Ueber die zu Gruppen gehoerigen induktiven Gruppoide, II, Math. Nachr. 48
- (1971), 275-278.
- [4] P. A. Grillet, Semigroups: an introduction to the structure theory (Marcel Dekker, New York,
- 1995).
- [5] P. J. Hilton and U. Stammbach, A course in homological algebra, Graduate Texts in Math. 4
- (Springer, New York, 1971).
- [6] J. Leech, Constructing inverse monoids from small categories, Semigroup Forum 36 (1987),
- 89-116.
- [7] J. Leech, Inverse monoids with a natural semilattice ordering, Proc. London Math. Soc. 70 (1995),
- 146-182.
- [8] J. Leech, On the foundations of inverse monoids and inverse algebras, Proc. Edinburgh Math. Soc.
- 41 (1998), 1-21.
- [9] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Math. 5 (Springer,
- New York, 1971).
- [10] M. Petrich, Inverse semigroups (Wiley, New York, 1984).
- [11] G. B. Preston, Representations of inverse semigroups by one-to-one
- partial transformations of a
- set, Semigroup Forum 6 (1973), 240-245; Addendum, Semigroup Forum 8 (1974), 277.
- [12] J. Riguet, Relations binaires, fermetures, correspondances de Galois, Bull. Soc. Math. France 76
- (1948), 114-132.
- [13] B. M. Schein, Representation of inverse semigroups by local automorphisms and multiautomorphisms
- of groups and rings, Semigroup Forum 32 (1985), 55-60.
- [14] B. M. Schein, Multigroups, J. Algebra 111 (1987), 114-132.
- [15] V. V. Wagner, Theory of generalised grouds and generalised groups, Mat. Sb. (NS) 32 (1953),
- 545-632." name="eprints.referencetext" />
- <meta content="FitzGerald, D.G. and Leech, Jonathan (1998) Dual Symmetric Inverse Monoids and Representation Theory. Journal of the Australian Mathematical Society, Series A, 64 (3). pp. 345-367. ISSN 0263-6115" name="eprints.citation" />
- <meta content="http://eprints.utas.edu.au/1911/1/FL98.pdf" name="eprints.document_url" />
- <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
- <meta content="Dual Symmetric Inverse Monoids and Representation Theory" name="DC.title" />
- <meta content="FitzGerald, D.G." name="DC.creator" />
- <meta content="Leech, Jonathan" name="DC.creator" />
- <meta content="230105 Group Theory And Generalisations (Incl. Topological Groups And Lie Groups)" name="DC.subject" />
- <meta content="There is a substantial theory (modelled on permutation representations of groups) of representations of an
- inverse semigroup S in a symmetric inverse monoid I_X , that is, a monoid of partial one-to-one self-maps
- of a set X. The present paper describes the structure of a categorical dual I*_X to the symmetric inverse
- monoid and discusses representations of an inverse semigroup in this dual symmetric inverse monoid. It
- is shown how a representation of S by (full) selfmaps of a set X leads to dual pairs of representations
- in I_X and I*_X, and how a number of known representations arise as one or the other of these pairs.
- Conditions on S are described which ensure that representations of S preserve such infima or suprema as
- exist in the natural order of S. The categorical treatment allows the construction, from standard functors,
- of representations of S in certain other inverse algebras (that is, inverse monoids in which all finite infima
- exist). The paper concludes by distinguishing two subclasses of inverse algebras on the basis of their
- embedding properties." name="DC.description" />
- <meta content="1998" name="DC.date" />
- <meta content="Article" name="DC.type" />
- <meta content="PeerReviewed" name="DC.type" />
- <meta content="application/pdf" name="DC.format" />
- <meta content="http://eprints.utas.edu.au/1911/1/FL98.pdf" name="DC.identifier" />
- <meta content="http://www.austms.org.au/Publ/Jamsa/V64P3/pdf/e07.pdf" name="DC.relation" />
- <meta content="FitzGerald, D.G. and Leech, Jonathan (1998) Dual Symmetric Inverse Monoids and Representation Theory. Journal of the Australian Mathematical Society, Series A, 64 (3). pp. 345-367. ISSN 0263-6115" name="DC.identifier" />
- <meta content="http://eprints.utas.edu.au/1911/" name="DC.relation" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/BibTeX/epprod-eprint-1911.bib" title="BibTeX" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/ContextObject/epprod-eprint-1911.xml" title="OpenURL ContextObject" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/ContextObject::Dissertation/epprod-eprint-1911.xml" title="OpenURL Dissertation" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/ContextObject::Journal/epprod-eprint-1911.xml" title="OpenURL Journal" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/DC/epprod-eprint-1911.txt" title="Dublin Core" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/DIDL/epprod-eprint-1911.xml" title="DIDL" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/EndNote/epprod-eprint-1911.enw" title="EndNote" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/HTML/epprod-eprint-1911.html" title="HTML Citation" type="text/html; charset=utf-8" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/METS/epprod-eprint-1911.xml" title="METS" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/MODS/epprod-eprint-1911.xml" title="MODS" type="text/xml" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/RIS/epprod-eprint-1911.ris" title="Reference Manager" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/Refer/epprod-eprint-1911.refer" title="Refer" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/Simple/epprod-eprint-1911text" title="Simple Metadata" type="text/plain" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/Text/epprod-eprint-1911.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
- <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1911/XML/epprod-eprint-1911.xml" title="EP3 XML" type="text/xml" />
-
- </head>
- <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
-
- <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
-
-
-
-
- <table width="795" border="0" cellspacing="0" cellpadding="0">
- <tr>
- <td><script language="JavaScript1.2">mmLoadMenus();</script>
- <table border="0" cellpadding="0" cellspacing="0" width="795">
- <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
- <tr>
- <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
- </tr>
- <tr>
- <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
- <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
- <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
- <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
- </tr>
- <tr>
- <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
- <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
- <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
- <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
- <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
- <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
- <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
- <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
- </tr>
- <tr>
- <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
- <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
- </tr>
- <tr>
- <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
- <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
- <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
- </tr>
- </table></td>
- </tr>
- <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
- <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
- <td align="right" style="white-space: nowrap">
- <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
- <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
- <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
- <input type="hidden" name="_order" value="bytitle" />
- <input type="hidden" name="basic_srchtype" value="ALL" />
- <input type="hidden" name="_satisfyall" value="ALL" />
- </form>
- </td>
- </tr></table></td></tr>
- <tr>
- <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
-
-
- <div align="center">
-
- <table width="720" class="ep_tm_main"><tr><td align="left">
- <h1 class="ep_tm_pagetitle">Dual Symmetric Inverse Monoids and Representation Theory</h1>
- <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">FitzGerald, D.G.</span> and <span class="person_name">Leech, Jonathan</span> (1998) <xhtml:em>Dual Symmetric Inverse Monoids and Representation Theory.</xhtml:em> Journal of the Australian Mathematical Society, Series A, 64 (3). pp. 345-367. ISSN 0263-6115</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/1911/1/FL98.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" border="0" class="ep_doc_icon" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/1911/1/FL98.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />158Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input value="2405" name="docid" accept-charset="utf-8" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://www.austms.org.au/Publ/Jamsa/V64P3/pdf/e07.pdf">http://www.austms.org.au/Publ/Jamsa/V64P3/pdf/e07.pdf</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">There is a substantial theory (modelled on permutation representations of groups) of representations of an
- inverse semigroup S in a symmetric inverse monoid I_X , that is, a monoid of partial one-to-one self-maps
- of a set X. The present paper describes the structure of a categorical dual I*_X to the symmetric inverse
- monoid and discusses representations of an inverse semigroup in this dual symmetric inverse monoid. It
- is shown how a representation of S by (full) selfmaps of a set X leads to dual pairs of representations
- in I_X and I*_X, and how a number of known representations arise as one or the other of these pairs.
- Conditions on S are described which ensure that representations of S preserve such infima or suprema as
- exist in the natural order of S. The categorical treatment allows the construction, from standard functors,
- of representations of S in certain other inverse algebras (that is, inverse monoids in which all finite infima
- exist). The paper concludes by distinguishing two subclasses of inverse algebras on the basis of their
- embedding properties.</p></div><table style="margin-bottom: 1em" border="0" cellpadding="3" class="not_ep_block"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">dual symmetric inverse monoid, representations of inverse semigroups</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/230105.html">230000 Mathematical Sciences > 230100 Mathematics > 230105 Group Theory And Generalisations (Incl. Topological Groups And Lie Groups)</a></td></tr><tr><th valign="top" class="ep_row">Collections:</th><td valign="top" class="ep_row">UNSPECIFIED</td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1911</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Dr D. G. FitzGerald</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">17 Sep 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">07 Feb 2008 12:22</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1911;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&eprintid=1911">item control page</a></p>
- </td></tr></table>
- </div>
-
-
-
- <!-- InstanceEndEditable --></td>
- </tr>
- <tr>
- <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
- <table width="795" border="0" align="left" cellpadding="0" class="footer">
- <tr valign="top">
- <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
- </tr>
- <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
- <tr valign="top">
- <td width="68%" class="footer">Authorised by the University Librarian<br />
- © University of Tasmania ABN 30 764 374 782<br />
- <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright & Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a> </td>
- <td width="32%"><div align="right">
- <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
- <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
- </a></p>
- </div></td>
- </tr>
- <tr valign="top">
- <td><p> </p></td>
- <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
- </tr>
- </table>
- <!-- #EndLibraryItem -->
- <div align="center"></div></td>
- </tr>
- </table>
-
- </body>
- </html>