Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2011.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Alunite in the Pascua-Lama High-Sulfidation Deposit: Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Deyell, C.L." name="eprints.creators_name" />
  14. <meta content="Leonardson, R." name="eprints.creators_name" />
  15. <meta content="Rye, R.O." name="eprints.creators_name" />
  16. <meta content="Thompson, J.F.H." name="eprints.creators_name" />
  17. <meta content="Bissig, T." name="eprints.creators_name" />
  18. <meta content="Cooke, D.R." name="eprints.creators_name" />
  19. <meta name="eprints.creators_id" />
  20. <meta name="eprints.creators_id" />
  21. <meta name="eprints.creators_id" />
  22. <meta name="eprints.creators_id" />
  23. <meta name="eprints.creators_id" />
  24. <meta content="David.Cooke@utas.edu.au" name="eprints.creators_id" />
  25. <meta content="article" name="eprints.type" />
  26. <meta content="2007-10-04 05:06:42" name="eprints.datestamp" />
  27. <meta content="2008-01-23T03:57:04Z" name="eprints.lastmod" />
  28. <meta content="show" name="eprints.metadata_visibility" />
  29. <meta content="Alunite in the Pascua-Lama High-Sulfidation Deposit:
  30. Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry" name="eprints.title" />
  31. <meta content="pub" name="eprints.ispublished" />
  32. <meta content="260300" name="eprints.subjects" />
  33. <meta content="restricted" name="eprints.full_text_status" />
  34. <meta content="advanced argillic thermodynamic modelling copper gold" name="eprints.keywords" />
  35. <meta content="The Pascua-Lama high-sulfidation system, located in the El Indio-Pascua belt of Chile and Argentina, contains
  36. over 16 million ounces (Moz) Au and 585 Moz Ag. The deposit is hosted primarily in granite rocks of Triassic age
  37. with mineralization occurring in several discrete Miocene-age phreatomagmatic breccias and related fracture networks.
  38. The largest of these areas is Brecha Central, which is dominated by a mineralizing assemblage of alunitepyrite-
  39. enargite and precious metals. Several stages of hydrothermal alteration related to mineralization are recognized,
  40. including all types of alunite-bearing advanced argillic assemblages (magmatic-hydrothermal,
  41. steam-heated, magmatic steam, and supergene). The occurrence of alunite throughout the paragenesis of this epithermal
  42. system is unusual and detailed radiometric, mineralogical, and stable isotope studies provide constraints
  43. on the timing and nature of alteration and mineralization of the alunite-pyrite-enargite assemblage in the deposit.
  44. Early (preore) alteration occurred prior to ca. 9 Ma and consists of intense silicic and advanced argillic assemblages
  45. with peripheral argillic and widespread propylitic zones. Alunite of this stage occurs as fine intergrowths
  46. of alunite-quartz ± kaolinite, dickite, and pyrophyllite that selectively replaced feldspars in the host rock.
  47. Stable isotope systematics suggest a magmatic-hydrothermal origin with a dominantly magmatic fluid source.
  48. Alunite is coeval with the main stage of Au-Ag-Cu mineralization (alunite-pyrite-enargite assemblage ore), which
  49. has been dated at approximately 8.8 Ma. Ore-stage alunite has an isotopic signature similar to preore alunite,
  50. and Δ34Salun-py data indicate depositional temperatures of 245° to 305°C. The δD and δ18O data exclude significant
  51. involvement of meteoric water during mineralization and indicate that the assemblage formed from H2Sdominated
  52. magmatic fluids. Thick steam-heated alteration zones are preserved at the highest elevations in the
  53. deposit and probably formed from oxidation of H2S during boiling of the magmatic ore fluids. Coarsely crystalline
  54. magmatic steam alunite (8.4 Ma) is restricted to the near-surface portion of Brecha Central. Postmineral
  55. alunite ± jarosite were previously interpreted to be supergene crosscutting veins and overgrowths, although stable
  56. isotope data suggest a mixed magmatic-meteoric origin for this late-stage alteration. Only late jarosite veinlets
  57. (8.0 Ma) associated with fine-grained pseudocubic alunite have a supergene isotopic signature.
  58. The predominance of magmatic fluids recorded throughout the paragenesis of the Pascua system is atypical
  59. for high-sulfidation deposits, which typically involve significant meteoric water in near-surface and peripheral
  60. alteration and, in some systems, even ore deposition. At Pascua, the strong magmatic signature of both alteration
  61. and main-stage (alunite-pyrite-enargite assemblage) ore is attributed to limited availability of meteoric
  62. fluids. This is in agreement with published data for the El Indio-Pascua belt, indicating an event of uplift and
  63. subsequent pediment incision, as well as a transition from semiarid to arid climatic conditions, during the formation
  64. of the deposit in the mid to late Miocene.
  65. " name="eprints.abstract" />
  66. <meta content="2005-01" name="eprints.date" />
  67. <meta content="published" name="eprints.date_type" />
  68. <meta content="Economic Geology" name="eprints.publication" />
  69. <meta content="100" name="eprints.volume" />
  70. <meta content="1" name="eprints.number" />
  71. <meta content="131-148" name="eprints.pagerange" />
  72. <meta content="10.2113/100.1.0131" name="eprints.id_number" />
  73. <meta content="TRUE" name="eprints.refereed" />
  74. <meta content="0361-0128" name="eprints.issn" />
  75. <meta content="http://dx.doi.org/10.2113/100.1.0131" name="eprints.official_url" />
  76. <meta content="Arribas, A., Jr, 1995, Characteristics of high sulfidation epithermal deposits,
  77. and their relation to magmatic fluids: Mineralogical Association of Canada
  78. Short Course Series, v. 23, p. 419–454.
  79. Barazangi, M., and Isacks, B.L., 1976, Spatial distribution of earthquakes and
  80. subduction of the Nazca plate beneath South America: Geology, v. 4, p.
  81. 696–692.
  82. Bethke, P.M., Rye, R.O., Stoffregen, R.E., and Vikre, P., in press, Evolution
  83. of the Summitville magmatic-hydrothermal acid-sulfate system: Chemical
  84. Geology.
  85. Bissig, T., Lee, J.K.W., Clark, A.H., and Heather, K.B., 2001, The Cenozoic history
  86. of magmatic activity and hydrothermal alteration in the Central Andean
  87. flat-slab region: New 40Ar-39Ar constraints from the El Indio-Pascua Au (-Ag,
  88. Cu) belt, 29°20'–30°30' S: International Geology Review, v. 41, p. 312–340.
  89. Bissig, T., Clark, A.H. and Lee, J.K.W., 2002a, Cerro de Vidrio rhyolite dome:
  90. Evidence for late Pliocene volcanism in the central Andean flat-slab region,
  91. Lama-Veladero district, 29°20' S, San Juan province, Argentina: Journal of
  92. South American Earth Sciences, v. 15, p. 571–576.
  93. Bissig, T., Clark, A. H., Lee, J.K.W., and Hodgson, C.J., 2002b, Miocene
  94. landscape evolution and geomorphologic controls on epithermal processes
  95. in the El Indio-Pascua Au-Ag-Cu belt, Chile and Argentina: ECONOMIC
  96. GEOLOGY, v. 97, p. 971–996.
  97. Chouinard, A., 2003, Alteration, mineralization and geochemistry of the
  98. high-sulphidation Au-Ag-Cu Pascua deposit: Unpublished Ph.D. thesis,
  99. Montreal, Canada, McGill University, 269 p.
  100. Cooke, D.R., and Simmons, S.F., 2000, Characteristics and genesis of epithermal
  101. gold deposits: Reviews in Economic Geology, v. 13, p. 221–244.
  102. Craig, H., 1961, Isotopic variations in meteoric waters: Science, v. 133, p.
  103. 1702–1703.
  104. Cunningham, C.G., Rye, R.O., Steven, T.A., and Mehnert, H.H., 1984, Origins
  105. and exploration signficance of replacement and vein-type alunite deposits
  106. in the Marysvale volcanic field, west-central Utah: ECONOMIC GEOLOGY,
  107. v. 79, p. 50–71.
  108. Dalrymple, G.B., Alexander, E.C., Jr., Lanphere, M.A., and Kraker, G.P.,
  109. 1981, Irradiation of samples for 40Ar/39Ar dating using the Geological Survey
  110. TRIGA reactor: U.S. Geological Survey Professional Paper 1176, 55 p.
  111. Deyell, C.L., 2001, Alunite and high sulfidation Au-Ag-Cu mineralization in
  112. the El Indio-Pascua belt, Chile-Argentina: Unpublished Ph.D. thesis, Vancouver,
  113. Canada, University of British Columbia, 300 p.
  114. Deyell, C.L., Rye, R.O., Landis, G.P., and Bissig, T., in press, Alunite in an
  115. evolving magmatic-hydrothermal system: The Tambo high-sulfidation deposit,
  116. El Indio district, Chile: Chemical Geology.
  117. Ebert, S.W., and Rye, R.O., 1997, Secondary precious metal enrichment by
  118. steam-heated fluids in the Crowfoot–Lewis hotspring gold-silver deposit
  119. and relation to paleoclimate: ECONOMIC GEOLOGY, v. 92, p. 578–600.
  120. Giesemann, A., Jager, H.J., Norman, A.L., Krouse, H.R., and Brand, W.A.,
  121. 1994, On-line sulfur-isotope determination using an elemental analyzer
  122. coupled to a mass spectrometer: Analytical Chemistry, v. 65, p. 2816–2819.
  123. Giggenbach, W.F., 1992, Magma degassing and mineral deposition in hydrothermal
  124. systems along convergent plate boundaries: ECONOMIC GEOLOGY,
  125. v. 87, p. 1927–1944.
  126. Godfrey, J.D., 1962, The deuterium content of natural waters and other substances:
  127. Geochimica et Cosmochimica Acta, v. 27, p. 43–52.
  128. Hedenquist, J.W., Arribas, A., Jr., and Reynolds, T.J., 1998, Evolution of an
  129. intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry
  130. and epithermal Cu-Au deposits, Philippines: ECONOMIC GEOLOGY, v. 93, p.
  131. 373–404.
  132. Henley, R.W., and Stewart, M.K., 1983, Chemical and isotopic changes in the
  133. hydrology of the Tauhara geothermal field due to exploitation at Wairakei:
  134. Journal of Volcanology and Geothermal Research, v. 15, p. 285–314.Jannas, R.R., Bowers, T.S., Petersen, U., and Beane, R.E., 1999, High-sulfidation
  135. deposit types in the El Indio district, Chile: Society of Economic
  136. Geologists Special Publication, v. 7, p. 27–59.
  137. Kay, S.M., Mpodozis, C., and Coira, B., 1999, Neogene magmatism, tectonism,
  138. and mineral deposits of the Central Andes (22° to 33° S latitude: Society
  139. of Economic Geologists Special Publication, v. 7, p. 27–59.
  140. Kornexl, B.E., Gehre, M., Höfling, R., and Werner, R.A., 1999, On-line δ18O
  141. measurement of organic and inorganic substances: Rapid Communications
  142. in Mass Spectrometry, v. 13, p. 1685–1693.
  143. Losada-Calderón, A.J., and McPhail, D.C., 1996. Porphyry and high-sulfidation
  144. epithermal mineralization in the Nevados del Famatina mining district,
  145. Argentina: Society of Economic Geologists Special Publication, v. 5,
  146. p. 91–118.
  147. Maksaev, V., Moscoso, R., Mpodozis, C., and Nasi, C., 1984, Las unidades
  148. volcánicas y plutonicas del cenozoico superior en la Alta Cordillera del
  149. Norte Chico (29°–31° S): Geología, alteración hidrothermal y mineralisacion:
  150. Revista geológica de Chile, v. 21, p. 11–51.
  151. Martin, M., Clavero, J., and Mpodozis, C., 1995, Estudio geologico regional
  152. del Franja El Indio, Cordillera de Coquimbo: Santiago, Chile, Servicio National
  153. de Geologia y Minera Registered Report IR-95-06, 232 p.
  154. ——1999, Late Paleozoic to Early Jurassic tectonic development of the high
  155. Andean Principal Cordillera, El Indio region, Chile (29–30° S): Journal of
  156. South American Earth Sciences, v. 12, p. 33–49.
  157. Muntean, J.L., and Einaudi, M.T., 2001, Porphyry-epithermal transition:
  158. Maricunga belt, northern Chile: ECONOMIC GEOLOGY, v. 96, p. 1445–1472.
  159. Ohmoto, H., and Lasaga, A.C., 1982, Kinetics of reactions between aqueous
  160. sulfates and sulfides in hydrothermal systems: Geochimica et Cosmochimica
  161. Acta, v. 46, p. 1727–1746.
  162. Ramos, V.A., Mahlburg Kay, S., Page, R.N. and Munizaga, F., 1989, La ignimbrita
  163. Vacas Heladas y el cese del volcanismo en el Valle del Cura, Provincia
  164. de San Juan: Revista Asociación Geológica Argentina, v. 44, p. 336–352.
  165. Rye, R.O., 1993, The evolution of magmatic fluids in the epithermal environment:
  166. The stable isotope perspective: ECONOMIC GEOLOGY, v. 88, p.
  167. 733–753.
  168. ——in press, A review of the stable isotope geochemistry of sulfate minerals
  169. in selected igneous environments and related hydrothermal systems:
  170. Chemical Geology.
  171. Rye, R.O., and Alpers, C.N., 1997, The stable isotope geochemistry of
  172. jarosite: U.S. Geological Survey Open-File Report 97-88, 28 p.
  173. Rye, R.O., Bethke, P.M., and Wasserman, M.D., 1992, The stable isotope
  174. geochemistry of acid-sulfate alteration: ECONOMIC GEOLOGY, v. 87, p.
  175. 225–262.
  176. Rye, R.O., and Stoffregen, R.E., 1995, Jarosite-water oxygen and hydrogen
  177. isotope fractionations: Preliminary experimental data: ECONOMIC GEOLOGY,
  178. v. 90, p. 2336–2342.
  179. Sandeman, H.A., Archibald, D.A., Grant, J.W., Villneuve, M.E., and Ford,
  180. F.D., 1999, Characterisation of the chemical composition and 40Ar-39Ar systematics
  181. of intralaboratory standard MAC-83 biotite: Geological Survey of
  182. Canada Current Research 1999-F, p. 13–26.
  183. Savin, S.M., and Epstein, S., 1970, The oxygen and hydrogen isotope geochemistry
  184. of clay minerals: Geochimica et Cosmochimica Acta, v. 34, p.
  185. 24–42.
  186. Schoen, R., White, D.E., and Hemley, J.J., 1974, Argillization by descending
  187. acid at Steamboat Springs, Nevada: Clays and Clay Minerals, v. 22, p. 1–22.
  188. Steiger, R.H., and Jäger, E., 1977, Subcommission on geochronology: Convention
  189. on the use of decay constants in geo- and cosmochronology: Earth
  190. and Planetary Science Letters, v. 36, p. 359–362.
  191. Steven, T.A., and Ratté, J.C., 1960, Geology of ore deposits of the Summitville
  192. district, San Juan Mountains, Colorado: U.S. Geological Survey
  193. Professional Paper 343, 70 p.
  194. Stoffregen, R., 1987, Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization
  195. at Summitville, Colorado: ECONOMIC GEOLOGY, v. 82, p.
  196. 1575–1591.
  197. Stoffregen, R.E., Rye, R.O., and Wasserman, M.D., 1994. Experimental
  198. studies of alunite: I. 18O-16O and D-H fractionation factors between alunite
  199. and water at 250-450°C: Geochimica et Cosmochimica Acta, v. 58, p.
  200. 903–916.
  201. Taylor, B.E., 1988, Degassing of rhyolitic magmas: Hydrogen isotope evidence
  202. and implications for magmatic-hydrothermal ore deposits: Canadian
  203. Institute of Mining and Mineralogy Special Volume, v. 39, p. 33–49.
  204. Truesdell, A.H., Nathenson, M., and Rye, R.O., 1977, The effects of boiling
  205. and dilution on the isotopic compositions of Yellowstone thermal waters:
  206. Journal of Geophysical Research, v. 82, p. 3694–3704.
  207. Wasserman, M.D., Rye, R.O., Bethke, P.M., and Arribas, A., Jr., 1992, Methods
  208. for separation and total stable isotope analysis of alunite: U.S. Geological
  209. Survey Open-File Report 92-9, 20 p." name="eprints.referencetext" />
  210. <meta content="Deyell, C.L. and Leonardson, R. and Rye, R.O. and Thompson, J.F.H. and Bissig, T. and Cooke, D.R. (2005) Alunite in the Pascua-Lama High-Sulfidation Deposit: Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry. Economic Geology, 100 (1). pp. 131-148. ISSN 0361-0128" name="eprints.citation" />
  211. <meta content="http://eprints.utas.edu.au/2011/1/Deyell%2C_Leondardson_et_al_ECON_GEOL_2005.pdf" name="eprints.document_url" />
  212. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  213. <meta content="Alunite in the Pascua-Lama High-Sulfidation Deposit:
  214. Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry" name="DC.title" />
  215. <meta content="Deyell, C.L." name="DC.creator" />
  216. <meta content="Leonardson, R." name="DC.creator" />
  217. <meta content="Rye, R.O." name="DC.creator" />
  218. <meta content="Thompson, J.F.H." name="DC.creator" />
  219. <meta content="Bissig, T." name="DC.creator" />
  220. <meta content="Cooke, D.R." name="DC.creator" />
  221. <meta content="260300 Geochemistry" name="DC.subject" />
  222. <meta content="The Pascua-Lama high-sulfidation system, located in the El Indio-Pascua belt of Chile and Argentina, contains
  223. over 16 million ounces (Moz) Au and 585 Moz Ag. The deposit is hosted primarily in granite rocks of Triassic age
  224. with mineralization occurring in several discrete Miocene-age phreatomagmatic breccias and related fracture networks.
  225. The largest of these areas is Brecha Central, which is dominated by a mineralizing assemblage of alunitepyrite-
  226. enargite and precious metals. Several stages of hydrothermal alteration related to mineralization are recognized,
  227. including all types of alunite-bearing advanced argillic assemblages (magmatic-hydrothermal,
  228. steam-heated, magmatic steam, and supergene). The occurrence of alunite throughout the paragenesis of this epithermal
  229. system is unusual and detailed radiometric, mineralogical, and stable isotope studies provide constraints
  230. on the timing and nature of alteration and mineralization of the alunite-pyrite-enargite assemblage in the deposit.
  231. Early (preore) alteration occurred prior to ca. 9 Ma and consists of intense silicic and advanced argillic assemblages
  232. with peripheral argillic and widespread propylitic zones. Alunite of this stage occurs as fine intergrowths
  233. of alunite-quartz ± kaolinite, dickite, and pyrophyllite that selectively replaced feldspars in the host rock.
  234. Stable isotope systematics suggest a magmatic-hydrothermal origin with a dominantly magmatic fluid source.
  235. Alunite is coeval with the main stage of Au-Ag-Cu mineralization (alunite-pyrite-enargite assemblage ore), which
  236. has been dated at approximately 8.8 Ma. Ore-stage alunite has an isotopic signature similar to preore alunite,
  237. and Δ34Salun-py data indicate depositional temperatures of 245° to 305°C. The δD and δ18O data exclude significant
  238. involvement of meteoric water during mineralization and indicate that the assemblage formed from H2Sdominated
  239. magmatic fluids. Thick steam-heated alteration zones are preserved at the highest elevations in the
  240. deposit and probably formed from oxidation of H2S during boiling of the magmatic ore fluids. Coarsely crystalline
  241. magmatic steam alunite (8.4 Ma) is restricted to the near-surface portion of Brecha Central. Postmineral
  242. alunite ± jarosite were previously interpreted to be supergene crosscutting veins and overgrowths, although stable
  243. isotope data suggest a mixed magmatic-meteoric origin for this late-stage alteration. Only late jarosite veinlets
  244. (8.0 Ma) associated with fine-grained pseudocubic alunite have a supergene isotopic signature.
  245. The predominance of magmatic fluids recorded throughout the paragenesis of the Pascua system is atypical
  246. for high-sulfidation deposits, which typically involve significant meteoric water in near-surface and peripheral
  247. alteration and, in some systems, even ore deposition. At Pascua, the strong magmatic signature of both alteration
  248. and main-stage (alunite-pyrite-enargite assemblage) ore is attributed to limited availability of meteoric
  249. fluids. This is in agreement with published data for the El Indio-Pascua belt, indicating an event of uplift and
  250. subsequent pediment incision, as well as a transition from semiarid to arid climatic conditions, during the formation
  251. of the deposit in the mid to late Miocene.
  252. " name="DC.description" />
  253. <meta content="2005-01" name="DC.date" />
  254. <meta content="Article" name="DC.type" />
  255. <meta content="PeerReviewed" name="DC.type" />
  256. <meta content="application/pdf" name="DC.format" />
  257. <meta content="http://eprints.utas.edu.au/2011/1/Deyell%2C_Leondardson_et_al_ECON_GEOL_2005.pdf" name="DC.identifier" />
  258. <meta content="http://dx.doi.org/10.2113/100.1.0131" name="DC.relation" />
  259. <meta content="Deyell, C.L. and Leonardson, R. and Rye, R.O. and Thompson, J.F.H. and Bissig, T. and Cooke, D.R. (2005) Alunite in the Pascua-Lama High-Sulfidation Deposit: Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry. Economic Geology, 100 (1). pp. 131-148. ISSN 0361-0128" name="DC.identifier" />
  260. <meta content="http://eprints.utas.edu.au/2011/" name="DC.relation" />
  261. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/BibTeX/epprod-eprint-2011.bib" title="BibTeX" type="text/plain" />
  262. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/ContextObject/epprod-eprint-2011.xml" title="OpenURL ContextObject" type="text/xml" />
  263. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/ContextObject::Dissertation/epprod-eprint-2011.xml" title="OpenURL Dissertation" type="text/xml" />
  264. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/ContextObject::Journal/epprod-eprint-2011.xml" title="OpenURL Journal" type="text/xml" />
  265. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/DC/epprod-eprint-2011.txt" title="Dublin Core" type="text/plain" />
  266. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/DIDL/epprod-eprint-2011.xml" title="DIDL" type="text/xml" />
  267. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/EndNote/epprod-eprint-2011.enw" title="EndNote" type="text/plain" />
  268. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/HTML/epprod-eprint-2011.html" title="HTML Citation" type="text/html; charset=utf-8" />
  269. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/METS/epprod-eprint-2011.xml" title="METS" type="text/xml" />
  270. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/MODS/epprod-eprint-2011.xml" title="MODS" type="text/xml" />
  271. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/RIS/epprod-eprint-2011.ris" title="Reference Manager" type="text/plain" />
  272. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/Refer/epprod-eprint-2011.refer" title="Refer" type="text/plain" />
  273. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/Simple/epprod-eprint-2011text" title="Simple Metadata" type="text/plain" />
  274. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/Text/epprod-eprint-2011.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  275. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2011/XML/epprod-eprint-2011.xml" title="EP3 XML" type="text/xml" />
  276.  
  277. </head>
  278. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  279. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  280.  
  281.  
  282.  
  283.  
  284. <table width="795" border="0" cellspacing="0" cellpadding="0">
  285. <tr>
  286. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  287. <table border="0" cellpadding="0" cellspacing="0" width="795">
  288. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  289. <tr>
  290. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  291. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  292. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  293. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  294. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  295. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  296. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  297. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  298. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  299. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  300. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  301. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  302. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  303. </tr>
  304. <tr>
  305. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  306. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  307. </tr>
  308. <tr>
  309. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  310. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  311. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  312. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  313. </tr>
  314. <tr>
  315. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  316. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  317. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  318. </tr>
  319. <tr>
  320. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  321. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  322. </tr>
  323. <tr>
  324. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  325. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  326. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  327. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  328. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  329. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  330. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  331. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  332. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  333. </tr>
  334. <tr>
  335. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  336. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  337. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  338. </tr>
  339. <tr>
  340. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  341. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  342. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  343. </tr>
  344. </table></td>
  345. </tr>
  346. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  347. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  348. <td align="right" style="white-space: nowrap">
  349. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  350. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  351. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  352. <input type="hidden" name="_order" value="bytitle" />
  353. <input type="hidden" name="basic_srchtype" value="ALL" />
  354. <input type="hidden" name="_satisfyall" value="ALL" />
  355. </form>
  356. </td>
  357. </tr></table></td></tr>
  358. <tr>
  359. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  360.  
  361.  
  362. <div align="center">
  363. <table width="720" class="ep_tm_main"><tr><td align="left">
  364. <h1 class="ep_tm_pagetitle">Alunite in the Pascua-Lama High-Sulfidation Deposit: Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry</h1>
  365. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Deyell, C.L.</span> and <span class="person_name">Leonardson, R.</span> and <span class="person_name">Rye, R.O.</span> and <span class="person_name">Thompson, J.F.H.</span> and <span class="person_name">Bissig, T.</span> and <span class="person_name">Cooke, D.R.</span> (2005) <xhtml:em>Alunite in the Pascua-Lama High-Sulfidation Deposit: Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry.</xhtml:em> Economic Geology, 100 (1). pp. 131-148. ISSN 0361-0128</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2011/1/Deyell%2C_Leondardson_et_al_ECON_GEOL_2005.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" border="0" class="ep_doc_icon" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2011/1/Deyell%2C_Leondardson_et_al_ECON_GEOL_2005.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />1119Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input value="2564" name="docid" accept-charset="utf-8" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.2113/100.1.0131">http://dx.doi.org/10.2113/100.1.0131</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">The Pascua-Lama high-sulfidation system, located in the El Indio-Pascua belt of Chile and Argentina, contains&#13;
  366. over 16 million ounces (Moz) Au and 585 Moz Ag. The deposit is hosted primarily in granite rocks of Triassic age&#13;
  367. with mineralization occurring in several discrete Miocene-age phreatomagmatic breccias and related fracture networks.&#13;
  368. The largest of these areas is Brecha Central, which is dominated by a mineralizing assemblage of alunitepyrite-&#13;
  369. enargite and precious metals. Several stages of hydrothermal alteration related to mineralization are recognized,&#13;
  370. including all types of alunite-bearing advanced argillic assemblages (magmatic-hydrothermal,&#13;
  371. steam-heated, magmatic steam, and supergene). The occurrence of alunite throughout the paragenesis of this epithermal&#13;
  372. system is unusual and detailed radiometric, mineralogical, and stable isotope studies provide constraints&#13;
  373. on the timing and nature of alteration and mineralization of the alunite-pyrite-enargite assemblage in the deposit.&#13;
  374. Early (preore) alteration occurred prior to ca. 9 Ma and consists of intense silicic and advanced argillic assemblages&#13;
  375. with peripheral argillic and widespread propylitic zones. Alunite of this stage occurs as fine intergrowths&#13;
  376. of alunite-quartz ± kaolinite, dickite, and pyrophyllite that selectively replaced feldspars in the host rock.&#13;
  377. Stable isotope systematics suggest a magmatic-hydrothermal origin with a dominantly magmatic fluid source.&#13;
  378. Alunite is coeval with the main stage of Au-Ag-Cu mineralization (alunite-pyrite-enargite assemblage ore), which&#13;
  379. has been dated at approximately 8.8 Ma. Ore-stage alunite has an isotopic signature similar to preore alunite,&#13;
  380. and Δ34Salun-py data indicate depositional temperatures of 245° to 305°C. The δD and δ18O data exclude significant&#13;
  381. involvement of meteoric water during mineralization and indicate that the assemblage formed from H2Sdominated&#13;
  382. magmatic fluids. Thick steam-heated alteration zones are preserved at the highest elevations in the&#13;
  383. deposit and probably formed from oxidation of H2S during boiling of the magmatic ore fluids. Coarsely crystalline&#13;
  384. magmatic steam alunite (8.4 Ma) is restricted to the near-surface portion of Brecha Central. Postmineral&#13;
  385. alunite ± jarosite were previously interpreted to be supergene crosscutting veins and overgrowths, although stable&#13;
  386. isotope data suggest a mixed magmatic-meteoric origin for this late-stage alteration. Only late jarosite veinlets&#13;
  387. (8.0 Ma) associated with fine-grained pseudocubic alunite have a supergene isotopic signature.&#13;
  388. The predominance of magmatic fluids recorded throughout the paragenesis of the Pascua system is atypical&#13;
  389. for high-sulfidation deposits, which typically involve significant meteoric water in near-surface and peripheral&#13;
  390. alteration and, in some systems, even ore deposition. At Pascua, the strong magmatic signature of both alteration&#13;
  391. and main-stage (alunite-pyrite-enargite assemblage) ore is attributed to limited availability of meteoric&#13;
  392. fluids. This is in agreement with published data for the El Indio-Pascua belt, indicating an event of uplift and&#13;
  393. subsequent pediment incision, as well as a transition from semiarid to arid climatic conditions, during the formation&#13;
  394. of the deposit in the mid to late Miocene.&#13;
  395. </p></div><table style="margin-bottom: 1em" border="0" cellpadding="3" class="not_ep_block"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">advanced argillic thermodynamic modelling copper gold</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/260300.html">260000 Earth Sciences &gt; 260300 Geochemistry</a></td></tr><tr><th valign="top" class="ep_row">Collections:</th><td valign="top" class="ep_row">UNSPECIFIED</td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2011</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Mrs Katrina Keep</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">04 Oct 2007 15:06</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">23 Jan 2008 14:57</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2011;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2011">item control page</a></p>
  396. </td></tr></table>
  397. </div>
  398.  
  399.  
  400.  
  401. <!-- InstanceEndEditable --></td>
  402. </tr>
  403. <tr>
  404. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  405. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  406. <tr valign="top">
  407. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  408. </tr>
  409. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  410. <tr valign="top">
  411. <td width="68%" class="footer">Authorised by the University Librarian<br />
  412. © University of Tasmania ABN 30 764 374 782<br />
  413. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  414. <td width="32%"><div align="right">
  415. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  416. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  417. </a></p>
  418. </div></td>
  419. </tr>
  420. <tr valign="top">
  421. <td><p>  </p></td>
  422. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  423. </tr>
  424. </table>
  425. <!-- #EndLibraryItem -->
  426. <div align="center"></div></td>
  427. </tr>
  428. </table>
  429.  
  430. </body>
  431. </html>