# Merging all the Spark-related tools into one image saves a LOT of space
# over having separate images for each, especially given they all share
# the same underlying infrastructure. It’s still just as easy to set up
# and run the various services via Docker Compose.
FROM python:3.11-slim-buster as python-base
# I originally used python:3.6-alpine but dropped it after getting tied
# in knots with Python dependencies around numpy. Pip under Alpine builds
# all modules from source. You can try to be clever and install the bigger
# modules like numpy via apk, but the problem with numpy is that the Python
# version most likely will install a different version of numpy from what
# the base Alpine image supplies pre-built, so you end up building numpy
# from source regardless, which takes forever (well, 10 minutes ;). I tried
# to figure out a combination that worked without success.
#
# Going to a later version of Python would probably resolve this, but that
# would require moving to Spark 3 (2.4 doesn't support 3.8 or later), and
# we don’t have time to test that at the moment. Which is why this is still
# using Python 3.6: if it ain't broke...
# Ideally we should run as a non-root user, but it's problematic to set
# up shared files, especially if running Docker within, say, VirtualBox.
# See https://vsupalov.com/docker-shared-permissions/
# ARG NB_USER="pyspark"
# ARG NB_UID="1000"
# ARG NB_GID="1000"
ENV PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
PIP_NO_CACHE_DIR=off \
PIP_DISABLE_PIP_VERSION_CHECK=on \
PIP_DEFAULT_TIMEOUT=100 \
VENV_PATH="/opt/env" \
# download mirrors
SPARK_MIRROR="https://archive.apache.org/dist" \
GRAPHFRAMES_MIRROR="https://repos.spark-packages.org" \
KAFKA_MIRROR="https://archive.apache.org/dist" \
# Spark
SPARK_MAJOR_VERSION="3.2" \
SPARK_MINOR_VERSION="4" \
HADOOP_VERSION="2.7" \
SPARK_INSTALL="/usr/local" \
SPARK_HOSTNAME="localhost" \
SPARK_MASTER_PORT="7077" \
SPARK_MASTER_WEBUI_PORT="8080" \
# Scala
SCALA_VERSION="2.12" \
# graphframes
GRAPHFRAMES_VERSION="0.8.2" \
# Kafka
KAFKA_INSTALL="/usr/local" \
KAFKA_VERSION="3.5.1" \
# PySpark
PYSPARK_KERNEL_NAME="PySpark" \
PYSPARK_PYTHON="/usr/local/bin/python" \
KERNELS_TEMPLATE_PATH="/tmp" \
KERNELS_DIR_PATH="/root/.local/share/jupyter/kernels"
# These environment variables need to be defined separately because you
# can't reference prior environment variables in the same ENV block.
ENV \
# Spark
SPARK_VERSION="$SPARK_MAJOR_VERSION.$SPARK_MINOR_VERSION" \
SPARK_HOME="$SPARK_INSTALL/spark" \
SPARK_MASTER="spark://$SPARK_HOSTNAME:$SPARK_MASTER_PORT" \
# Kafka
KAFKA_HOME="$KAFKA_INSTALL/kafka" \
# PySpark
PYSPARK_DRIVER_PYTHON="$PYSPARK_PYTHON"
# ditto
ENV PYTHONPATH="$SPARK_HOME/python:$SPARK_HOME/python/lib/py4j-0.10.7-src.zip" \
PYTHONSTARTUP="$SPARK_HOME/python/pyspark/shell.py" \
PYSPARK_SUBMIT_ARGS="--master $SPARK_MASTER pyspark-shell"
# builder-base is used to build dependencies
FROM python-base as builder-base
ARG BUILD_PACKAGES="wget gnupg software-properties-common apt-transport-https gcc python-dev"
# need gcc, python-dev to build psutil (dependency of something in the pip install)
ENV PATH="${VENV_PATH}/bin:$PATH"
# Coalescing the RUNs saves quite a significant amount of space
# (about 10% just for Spark alone).
# <https://www.dajobe.org/blog/2015/04/18/making-debian-docker-images-smaller/>
RUN apt-get update && \
apt-get install -y --no-install-recommends $BUILD_PACKAGES && \
# Add Temurin key and source: <https://adoptium.net/installation/linux/>
mkdir -p /etc/apt/keyrings && \
wget -O - https://packages.adoptium.net/artifactory/api/gpg/key/public | tee /etc/apt/keyrings/adoptium.asc && \
echo "deb [signed-by=/etc/apt/keyrings/adoptium.asc] https://packages.adoptium.net/artifactory/deb $(awk -F= '/^VERSION_CODENAME/{print$2}' /etc/os-release) main" | tee /etc/apt/sources.list.d/adoptium.list && \
# Create Python virtual environment
python3 -m venv $VENV_PATH && \
# Download, install, and symlink spark
cd $SPARK_INSTALL && \
wget -q --show-progress --progress=bar:force:noscroll $SPARK_MIRROR/spark/spark-$SPARK_VERSION/spark-$SPARK_VERSION-bin-hadoop$HADOOP_VERSION.tgz 2>&1 && \
tar xzf spark-$SPARK_VERSION-bin-hadoop$HADOOP_VERSION.tgz && \
ln -s spark-$SPARK_VERSION-bin-hadoop$HADOOP_VERSION spark && \
# Download and install graphframes
cd $SPARK_INSTALL/spark/jars && \
wget -q --show-progress --progress=bar:force:noscroll $GRAPHFRAMES_MIRROR/graphframes/graphframes/$GRAPHFRAMES_VERSION-spark$SPARK_MAJOR_VERSION-s_$SCALA_VERSION/graphframes-$GRAPHFRAMES_VERSION-spark$SPARK_MAJOR_VERSION-s_$SCALA_VERSION.jar 2>&1 ; \
# Download, install, and symlink Kafka
cd $SPARK_INSTALL && \
wget -q --show-progress --progress=bar:force:noscroll $KAFKA_MIRROR/kafka/$KAFKA_VERSION/kafka_$SCALA_VERSION-$KAFKA_VERSION.tgz 2>&1 && \
tar xzf kafka_$SCALA_VERSION-$KAFKA_VERSION.tgz && \
# Install required modules for PySpark and install kernel
pip install --upgrade pip && \
pip install jupyterlab kafka-python graphframes
# Tornado 6 breaks sparkmonitor
# tornado==5.1 \
# sparkmonitor \
FROM python-base as production
COPY --from=builder-base $VENV_PATH $VENV_PATH
ENV PATH="${VENV_PATH}/bin:$PATH" \
PYTHONSTARTUP="$SPARK_HOME/python/pyspark/startup.py"
COPY --from=builder-base $SPARK_INSTALL/spark-$SPARK_VERSION-bin-hadoop$HADOOP_VERSION $SPARK_INSTALL/spark-$SPARK_VERSION-bin-hadoop$HADOOP_VERSION
COPY --from=builder-base $SPARK_INSTALL/kafka_$SCALA_VERSION-$KAFKA_VERSION $SPARK_INSTALL/kafka_$SCALA_VERSION-$KAFKA_VERSION
COPY --from=builder-base /etc/apt/keyrings/adoptium.asc /etc/apt/keyrings/adoptium.asc
COPY --from=builder-base /etc/apt/sources.list.d/adoptium.list /etc/apt/sources.list.d/adoptium.list
RUN cd $SPARK_INSTALL && \
ln -s spark-$SPARK_VERSION-bin-hadoop$HADOOP_VERSION spark && \
ln -s kafka_$SCALA_VERSION-$KAFKA_VERSION kafka && \
apt-get update && apt-get install -y --no-install-recommends temurin-11-jdk tini procps && \
pip install findspark && \
ipython kernel install --name "$PYSPARK_KERNEL_NAME" && \
# Clean up some crap, like the 50MB of JDK source and various documentation.
rm -rf /usr/lib/jvm/temurin-11-jdk-amd64/src.zip /usr/lib/jvm/temurin-11-jdk-amd64/sample /usr/lib/jvm/temurin-11-jdk-amd64/man && \
rm -rf $SPARK_HOME/examples $KAFKA_HOME/site-docs && \
# Clear out as many caches as possible.
apt -y --purge autoremove && \
apt-get clean -y && \
rm -rf /var/lib/apt/lists/* && \
rm -rf /tmp/* && \
rm -rf /var/cache/* && \
rm -rf /root/.cache
# && \
# # Technically dodgy, but it's not as if we're going to mess with packages later...
# rm -rf /var/lib/dpkg/info
# Startup scripts
COPY start-master.sh start-worker.sh start-jupyter.sh start-kafka.sh /usr/local/bin/
#COPY startup.py $SPARK_HOME/python/pyspark
# Configuration files
COPY spark-defaults.conf $SPARK_HOME/conf
COPY server.properties $KAFKA_HOME/config/
# PySpark kernel, based on the template from
# <https://github.com/Anchormen/pyspark-jupyter-kernels>.
COPY kernel.new.json $KERNELS_DIR_PATH/$PYSPARK_KERNEL_NAME/kernel.json
# Spark doesn't seem to respond directly to SIGTERM as the exit status is
# for SIGKILL (137), after a pause. Presumably docker compose down times out.
# Using tini gives immediate exit with status 143 (SIGTERM).
ENTRYPOINT ["/usr/bin/tini", "--"]
# Override this in your docker-compose.yml or at the command line.
# Spark master (default): /usr/local/bin/start-master.sh
# Spark worker: /usr/local/bin/start-worker.sh
# PySpark: /usr/local/bin/start-jupyter.sh
# Kafka: /usr/local/bin/start-kafka.sh
CMD ["/usr/local/bin/start-master.sh"]
# debugging
# CMD ["bash"]